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WMMARY 

A theoretical development of the FLEXSTAB system is presented. ?ne development 
i n t w t e s  the th~w~t ica l  mechanics of a flexible body with a low frequency unsteady aero- 
dynamic theory employing Linear influence coefficients based on finite element approxima- 
tions. The theoretical mechanics resolve the dynamics 
dynamics of free vibration modes superimposed on ri 
made using a mean reference frame for structural mch 
of the FLEXSAB system: one, a logical merger of quasisteady and dynamic aeroelasticity 
throiigti the residual flexibility approximation; and, two, a logical basis ior incorporating into 
the analysis empirical, rigid aircraft aerodynamic diita. The aerodynamic theory is ap;.licable 
to subsonic and supersonic flow and multiple wingbody-tail-nacelle configurations. Aere  
dynamic influence coefficients are derived using a paneling scheme which lends itself to empir- 
ical corrections. Finally, the theoretical aero- and structural dynamics are integrated, conserv- 
ing energy of the system and thereby yielding equations of motion appropriate to stability 
evaluation. These equations are expressed for a steady, reference motion to determine tkm 
and static stability. They are also expressed in terms of unsteady perturbations about the 
reference motion to determine dynamic stability by characteristic roots or by time histories 
following an initial perturbation or following penetration of a discrete a s t  flow field. 

flexible aircraft into stnlctural 
dy dynamics. This resolution is 

and leads to two important features 
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1.0 INTRODUCTION 

Since the early days of aviation, aircraft designers have contended with acroelastic prob- 
lems. Cornthations of aerodynamic and incrtial loads on flexible aircraft structures have 
,aused k.a3lems including wing divergence, flutter, and loss of control. Because these aero- 
elastic pn-Uems have caused catastrophic failures. extensive analytical methods have been 
developed to predict and to prevent their occurrence. 

Aeroelasticity also irifluciices stability; however, until recently, the effects were so minor 
that they could be evaluated satisfactorily by rigid-aircraft stability theory using simple modi- 
fications to the stability derivatives. This approach. however, is not valid for the latest, and 
largest, flexible aircraft designed t o  operate at high dynamic pressures. The latest transonic 
and supersonic transports are prime examples. The static strbility characteristics af these 
aircraft are drastically affected by elastic structural deformation. Further, because some 
of their structural motions have characteristic frequencies nearly as small as those of their rigid 
body motions, dynamic stability is significantly affected by the dynamics of the structure 
through unsteady aerodynamic coupling between the rigid body and t!ie structural motions. 
For these aircraft, a mathematical model based fundamentally on the dynamics of a flexible 
body is rcquired to  predict static and dynamic stability. 

The low aspect ratio, thin wing. slender body configurations of large supersonic aircriift 
pose the most difficuit problems. Severe aeroelastic effects on the stability of these aircraft 
must be evaluated early in the preli.ninary design period. These aeroelastic effects arise from 
comp!ex structural deformation shapes in the presence of strong interference flows among the 
wing, body, nacelles, imd tail. Eval~ation requires sophisticated structural, aerodynamic, and 
dynamic analytical methods having a great deal of generalitv. These analytical methods consist 
of large digital computer programs with massive data transfer between the programs. The flow 
time required for the aiialysis is very large and reduces its effectiveness in the design cycle, if a 
unified system of analysis is not available. Recognizing these facts, development of the FLEX- 
STAB Computer Program System was undertaken by The Boeing Company under contract 
with the NASA-Ames Rcsearch Center. The objective was to provide a unified system of 
coiiipu tcr progranis havirbg the required gencrali ty. 

FLEXSTAB is a sys tm of digital computer progranis based on linear theories for evaluat- 
ing static stability. dynam;c stability, trim state, structural loading. and elastic deformation of 
ai bitwry aircraft configurations in subsonic and supersonic flight. The analysis includes struc- 
tiiral dyn:imics in a controls-fixed dynamic anaiysis of longitudinal and lateraldirectional 
motions. The distinctive fc: tures of the FLEXSTAB system are as follows: ( 1  ) the system is 
kased 011 irite:rratcd aerody~,aniic, structural, and dynamic analytical ~nctliods valid for virtuaIly 
**very practical aircraft configuration havins a plane of symmetry (3) thc aerodynamic analysis 
c.in readily incorporate cmplrical and theoretical corrections, and (3)  the system includes the 
Icw-frcquciicy aerodynamic dl ixts  appropriatc for cvaluating the stability of large aircraft. 

The lineiir acrodynamic analytical method used in the systcni is essentially that intro- 
d u c ~ J  by Woodward (rcf. 1 - 1  I l o r  representing supersonic ilow about wing-body combiiw 
ti0r.s. Howzver, the method 113s been extended to include subsonic flow, arbitrary wingbody- 
naccllc-tail arrangements, and low-frequency unsteady aerodynamics. I n  addition, the 



FLEXSTAB system is formulated to accept aerodynamic data fcr making corrections to its 
linear analysis. The data may be in the form of experimentaf data from wind tunnel f o r a  and 
pressure models, or  data from nonlinear analytical methods. The capabiiity for making 
aerodyamic corrections was deemed essential because norilintar aerodynamic phenomenh 
nearly alwiiys havz important effects on the stability of practical aircraft confi@irdtions. 

The FLEXSAB system contains a structural finite element method based on beam 
theory; it will also accept structural properties generated externally by structural programs 
such as NASrRAN (ref. 1-2). Tlir systein has been uscd i n  conjunction with the Boeing- 
SXMECS structuml program (ref. 1-3). 

The dyfiamic analysis uses the residual flexibility concept, wherein an arbitrarily selected 
titimber of freevibration structural mode shapes are usea as dynamic degrees of freedom and 
the remaining free-vibratian structural mode shapes are treated as quasi-static+ degrees of 
freedom. The ldtter do not appear explicitly in the dynamic problem, their eftect being 
represented in tcrms af residsal flexibility. 

The formulation and programming of the system have been tested by predicting the 
stability characteristics of typical subsonic and supersonic aircraft. The test aircraft were the 
Boeing 707-330B. the Boeins B27C7 SST, and thc Lockheed YF-I3A. Wind-tunnel and flight 
test data were compared with numerical results to demonstrate the validity of the system. 
Comparisons were made of the longitudinal and lateraldirectional characteristics of the 
Boeing 767-3208 at mid-cniise (Mach numbcr = 0.81, the longitudinal Characteristics of the 
Boeing 32707 SST at mid-caise (Mach number = 2.7), and the longitudinal characteristics 
of the Lockheed YF-I 2A at Mach nlimbeis = 0.8 and 2.8. 

This report, Volume I of foui volumes, describes the engineering analysis on which the 
FLEXSTAB computing progrim system is based. Volume I1 is a computer program user’s 
manual. Volume 111 describes the FLEXSTAB computer program, and Volume IV contains 
the results cGmputed for the test cases. 

It stocld be noted that the scope of the FLEXSTAB system described in this report is 
cumeiltly being extended. The computer program coding is alsc being revised. Each version is 
identified by a decimal number (X.Y;, X indicating the technology (or analytical) level, and Y 
the level of coding pertaining to a given X. The system described in this report is 
LEVEL 1.02.00. 

*A quasi-static degree of freedom is one for which damping and inertial forces are so s;nall 3s 
to be negligible. 



20 COORDlNATE SYSTEMS AND KINEMATIC DESCRIPTION 

Panel or 
Segment Axis Systems 

2.1 INTRODUCTION 

Thin MY panel-tN,, ~iNi, SNi 

Slender body centerline segment- 

hi. hi* hi 
Interference surface panel- 
!Mi* Ni, rMi 

The objectives of this section are twofold. The first is to  introduce the coordinate 
systems used in the formulation of the FLEXSTAB system. The second is to derive the basic 
kinematic description used in the FLEXSTAB system analysis. 

All coordinate systems used in the formulation are right-handed, rectangular Cartesian 
and &-e listed in table 2.1-1. Five of the coordinate systems are termed fundamental axis 
systems and are completely defined in section 2.2. In addition, local axis systems are 
introduced in sections 3 and 4 and are used in the aerodynamic and structural derivations 
contained in those sections. 

TABLE 2.1-1.-COORDINATE AXISSYSTEMS 

FUNDAVENTAL AXIS SYSTEMS 
~ ~ ~~~~ 

inertial Axis System-X'. Y', Z-inenial reference frame for strui.%ural and rigid body dynamia 

Fluid Axis Svstem-x. y. z -irsrtial reference frame for aer&vnamics 

Body Axis Svstem-Xs. Ys. ZB-body-fixed reference frame for rigid body motions 

Reference Axis System-X, Y. 2- Wy-fixed coordinate system for geometric, structural, and inertial 

Stability Axis System-%, Ys. 2+mdy-fixed reference frame for stthility parameters 

- 

description 

LOCAL AXIS SYSTEMS 

Axis systems I Aerodynamic I Structural 

Two of the fundaniental axis systems are inertial reference frames. One, termed the 
Inertial Axis System, is earth fixed and is used as an inertial reference frame for the dynamics 
of a flexible aircraft. The other, termed the Fluid Axis Systein, trmslates with a steady 
velocity relative to the earth and is the inertial reference frame for aerodyiiamics. The three 
remaining fuiidamental axis systems are mean reference frariies; a concept discussed in dc tail 
in  section 2.3; iir gerieral. they arc in aior iot i  rc'lurive to the r\vo inerrial rcftv-oic*e frame.; hrrr 

2- 1 



am j k e d  relative to one another. One mean reference frame, tsrmed the Body Axis System, is 
used as a basis for expanding vector quantities associated with rigid-body motion. The second, 
termed the Reference Axis System, is used as a coordinate system in the analytic description 
of geometric, structural, and aerodynamic properties. The third, termed the Stability Axis 
System, is used as a basis for describing the stability characteristics of an aircraft. 

The motions of the three mean reference frames (Le., the Body, Reference, and Stagirity 
Axis Systems) are such that they may be treated as body fixed, even though the ainxaft is 
undergoing elastic deformation, i~ which case every material particle of the aircraft is in 
motion relative to the mean reference f m m .  The mean reference frames are given an initial 
0rient;athn relative to the aircraft when it has a specific deiormed shape, e.&, the shape in the 
design 
mined 
minimum. This requirement yields six conditions determining the translational and rotational 
velocities of the mean reference fiames rehtive to  the Inertial Axis System. If the aircraft is 
moving as a rigid body then the minimum kinetic energy is zero and the mean reference 
frames are body fixed. Section 2.3 shows that even when the aircraft is undergoing elastic 
deformation the mean reference frames :lave the characteristics of a body-fmed axis system; 
hence, the terms 'body-fired axis rystem"md "mean reference frame"are used inter- 
changeably in the following. 

. Then subsequent motions of the mean reference frames are deter-' 
'kinetic energy of the aircraft motion relative to them to be at a 

The introductior, of body-fixed axis systems is a necessity for the FLEXSTAB system 
analysis. Elastic dcfonnation of an aircraft is described in the FLEXSTAB system by equa- 
tions based on the classical theory of elasticity, reference 2-1. As a result, equations related 
to the structural properties of an aircraft are derived in terms of a coordinate system relative 
to which rotations of the structure are very small. Requiring the Reference Axis System to be 
a mean reference frame satisfies this requirement. 

Kinematics based on motions of and motions relative to a mean refsrence frame are 
par+icularly advantageous. Motions of a mean reference frame are governed by equations of 
motion identical in form to the equations of motion for a rigid aircraft. Consequently, the 
parameters derived from the equations of motion and used to evaluate stability of a flexible 
aircraft are identical in physical significance with the parameters used to evaluate stability of a 
rigid aircraft. Also, because rigid body motions underlie all of the motions involved in the 
stability analysis, wind tunnel test data acquired from rigid wind tunnel models may be used 
3s direct empirical corrections in the FLEXSTAB system analysis. 

The remainder of this section is devoted to deriving kinematic relations associated with 
the aerodynamics of the FLEXSTAB system. These kinematic relations are derived in 
section 2.3.3. They relate flow incidence at the surface of an aircraft to its 7 zomctric shape, 
elastic deformation, rigid body motions, and control surface deflectit ms. Sectio:: 2.3.3 also 
contains a derivation of the reiations desrribing variations in :he liyriarnic pressure and Mach 
number arising from aircraft motions. Finally, relatior,; describing motions of the wake of an 
aircraft relative to the aircraft are derived i i i  section 2.3.4. 



2.2 COORDINATE SYSTEMS 

2.2.1 Inertial Axis System 

The Inertial Axis System (X', Y ', 2') is earth fixed and is oriented relat;ve to the earth as 
shown by figure 2.2-1. The 2' axis is vertical, positive downward. The directic,? of the X' axis 
represents ~n initial heading of the aircraft, and the Y' is oriented to form L right-handed sys- 
tem. The origin of the Inertial Axis System is a t  some initial location of the aircraft's center 
of gravity. 

2.2.2 Body Axis System 

The origin of the Body Axis System (XB, YB, ZB) is at the aircraft's center of gravity 
and moves with this center of gravity along the flight path. The X ~ , Z B  plane coincides with 
the undefonned aircraft's plane of symmetry with XB positive forward and parallel to the 
undeformed ctnterline of the fuselage, feure 2.2-1. The orientation of the Body Axis Sys- 
tem relative to the lnertial Axis System is described in terms of Euler angles. The notation 
and arrangement of reference 2-2 are used-the heading angle is denoted as JI. the pitch atti- 
tude as 0, and the angle of hank as @- Ignoring the shift of the origin along the flight path, 
the lnertial Axis System is related to the Body Axis System by the following transformation: 

where 

= [TI [ ::] (2.2-1 1 

cosecos~ sin$sinecosY-cos@sinY 
cos8sinY sin0sinesinY+cn~~c.?s'~' 
-sin9 s in$cos  e 

2.2.3 Fluid Axis System 

The luid Axis System (x, y, z) (fig. 2.2-2) is initially aligned with the Body Axis Sys- 
tem; however, ttv: origin niay be located arbitrarily on the plane of symmetry. The x axis i s  

rlositive aft; the z axis is positive upward, and the y axis is positive along the right-hand wing. 
The arrangement is that used in most texts on the subject of aerodynamics, e.g., reference 2-3. 
The Fluid Axis Systeln moves with a steady velocity,U (t=t,), in the negative x direction and 
is in motion relative :a  the Body Axis System. Figure 2.2-2 shows the oricntation of the two 
axis systems at the instant of time under consideration, t = to. At this instmt of t init  they 
are related by 

cg  - 'B x = x  

Y YB 

z = zcg - ZB 
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FIGURE 7.2-i.--lPtEdTIAL ND BOD1 XIS SYSTEM.? 

zb 

F!GURE 2.2-2.-BODY, FLUID, AND REFERENCE AXIS SYSTEAdS AT TIME t = to 
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where (Xcg, 0, Z ) are the coordinates of the aircraft's center of gravity in the Fluid Axis 
System. cg 

The Fluid Axis System (fig. 2.2-3) is a portable axis system. The Body Axis S stem is 
displaced from the FPdd Axis System as shown by figure 2.2-3 a t  instants of :;,ne i\;!lowing 
the initial ifitant of time under consideration. The .ranslaticmal and rstalional velocities of 
the Body Axis System relative to  the Inertial Aris Sgtelii are 

.4 A A 

3- = u i B  + i r j B  + wkB 

o 

at t=to c. 

A h * (2.2-3) 
-c = Pig + Q; B + R k ~  3 r e spec t ive ly  ; 

while the Fluid Axis System is nonrotating and is trapslating with the steady velocity, UiB. 
Even though nonzero values of V, W, and 0' ar.d their time rates of change cause these 
two axis systems t o  become separated with time, they are realigned by shifting the Fluid 
Axis System at any new instant of time under consideration-hence, the term portable 
axis system. 

X B 

V 

Time = to Time >?, 

NGURE 2.2-3.-fLUID AXISSYSTEM ASA PQRTABLESYSTEM 

Since the Fluid Axis System moves reiativeJo the Body Axis System. the velocity of a 
fluid pargcle can be described as either velocity Q relative to the Fluid Axis System or 
velocity V relative to the Body Axis System. hese two velocities are related hy ihe expression 

at t=to 
(2.3-4) 

where 7 is the position of the fluid particle relative to the  origin of the Body Axis Systeni and 
h h -+ v R  = Vj, + WK, at t= to  ( 3 . 2 - 5 )  

is the velocity of the Body Axis System relative to the Fluici Axis Sys tm a t  tiiiic t = to. 
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2.2.4 Refcremx Axis SHem 

x = xcg - XB 

(2-2-7) 

whete the time &pcndence is OI& a imtsequen& of ebt& deformation and control d a c e  
deflections - 

- 
2.2.5 Stability Axis System 

Thestibility ~ x b  system, a third a~dy&& axissystm, has the origin at an A- 
dynamic Moment Rekence Point. Le., the point about which the a d y n a m i c  moments 
invdvd in stability tie. : .zt+ are r n m  (fig. 2.24). The coordinates are denoted as 

- 

FIGURE 2.2-4.-BODY AND STABILITY AXIS SYST€MS 



+ &. Y,, 5. Thc axis is positive Cumyrd and atignirt with tlic projwtion cf Vt- 0 1 1  tlic air- 
cmft plane of syiiiinctry (SLY sw. 5). Thc Ys axis is positive dong the riglit4wid wing. and Z, 
b pclsitiw clownwad. Thc Stability Axis System is o h h i n d  Crum the lknly Axis System hy a 
rotation. ai, ahout thc YB axis and P tnnslation or t k  origin, AX. fwiir thc wntor o! :ravity 
to tile AcraJy~r;lmic: Moniait Rcfcrcntr Point, fipuh' 2.2-4. l l i c  tmnsli,miatiun of ccxmlinatcs. 
thcrefm*. is $vcn by 

I 

Xs = X cosal + 2 s i n a l  - hXcosa l  B B 
Ys = YB 

- 
Zs = -XBsina- 1 + Z B cosal + A X s i n a l  

(2.2-8) 

The fundamental axis systcms and their functions in the FLEXSTAB system analysrs we 
summarized @ table 2-2-2- 

23 KINEMATIC DESCRIFIION 

This section contains a development of the kinematics of the FLEXSAB system 
describing motions related t o  the dynamics of a flexibk aircraft. The equations governing the 
dynamics must be expressed in terms of motions relative to  an inertial reference frime. The 
kinematics derived here satisfy this requirement but employ moving axis systems as inter- 
mediate fmmes of referen=. Motions relative to inertial reference frames (the Inertial and 
Fluid Axis Systems) are introduced in sections 2.3.1 and 2.3.3. Moving axis systems (the 
Body. Refemncu, and Stability Axis Systems) are introduced in section 2.3.2 where they are 
given the pr~pertie~ of a mean reference frame-properties which are discussed in detail in 
section 2.3.2. 

In sectior. 2.3.2-1. kinematics are developed for a moving axis system having an 
unspecified translational and rotational velocity relative to the Inertial Axis System. The 
velocity of the moving axis system is determined in section 2.3.2.2, by minimizing the kinetic 
energy OC the aircraft apparent to an observer in the moving axis system. The moving axis 
system is then a mean reference frame. The conditions determining velocity. in section 2.3.1.3. 

- of a mtving axis system and making it a mean reference frante arc shown to be noninte_mblr 
constraint conditions. These are constraints on the deformation of a flexible aircraft and they 
are required, in section 4, to develop the dynamic equations from Hamilton's principle. In  
section 2.3.2.4 an approximation is introduced which 'nakes the constraint cwditioas 
integrable. The validity of this approximation is examined in section 2.3.2.5 for nvo types of 
motion pertinent t o  aircraft stability evaluation: ( I  ) steady motion and (2) unsteady 
perturbation motion about a steady reference motion. 

The kinematics of the atmosphere surrounding an aircraft are considered ;n scctions 2.3.3 
and 2.3.4. The kinernatics of a fluid particle moving along the surface of an clastisally 
deforming aircraft are developed in section 2.3.3. This development leads to thc surface 
boundary condition used in deriving the aerodynamic theory of the FLEXSTAB system in 
section 3. Thc surface boundary condition is derived in section 2.3.3. I and it is linearized for 
small flow incidenct in sections 2.3.3.2 through 2.3.3.5. Section 2.3.3.0 contains ;I dcrivaiioii 
of formulas describing variations in the dynamic pressure and Mash number ! the w r f x e  of  ;I 
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moving aircraft. In section 2.3.4 the kinematics describing motions of an aircraft relative to its 
wake are developed. 

2.3.1 Motion Relative to the Inertial -4xis System 

In the following an aircraft is considered to be a continuous, flexible body made up of 
differential mass elements p~dV undergoing motion rehtive to  the Inertial Axis System, 
figure 2.11. The motion is described by a vector field as follows: 

* - 1 - 1 - 1  1 - * - 1 - 1  * 1 - 1 - 1 - 1  

r'(X,Y,Z,t) = X ( X , Y , z , t ) i '  + Y ( X , Y y Z y t ) l f  
(2.3-1) 

1 - 1 - 1 - 1  s. 

+z ( X , Y y Z , t ) k l  
A. E* A* 

where i , j , k are the unit base vectors of the Inertial Axis System and the quantities j?', q', 
2 are the coordinates of the differential mass element in the Inertial Axis System at a 
referena instant 0: time t = io, Le.. the quantities X , Y , 2 are the Lagnngian coordinate nf 
the differential m a s  element, pa,- 29-30 of reference 2-1 - 

-. -1 a. 

The velocity of the differential mass element is computed from the moticn, Le., equation 
(2.3-1). as follows: 

This expression describes, at time t X 0 ,  the velocity ( m F F d  relative to  the Inertial Axis 
System) of the differential mass elemen! located at %', Y', Z'at time t = to. Equation (2.3-2) 
also defines the opentor d/dt as the time rate of change apparent to an observer fixed in the 
Inertial Axis System. 

2.3.2 Mean Reference Frame 

In this section the motion relative to the Incrtid Axis System, section 2.3.1, is expressed 
in terms of an intermediate reference frarrc. 

2.3.2. I Moving refirerice frame. -Consider a rectangular, Cartesian coordinate system in 
motion rektive to the Inertial Axis System, figure 2.3-2. The origin is at the moving point Po 
and Liis position F$t) relative to  the origin of the Inertial Axis System. Th,: position of a 
diffemntial mass element, equation (2.3-1 ), is now espresserl as 

f 2.3-3) 

-- h - 
where p(& q,  {, t) is the positior dative to the mavin: axib sjsteni expressed in terms of the 
Lagrangian coordinates i ,  I ) ,  f ,  ix . ,  the coordinatrs of the mass clcment in thc moving axis 
system at the reference instint of time t = to. The relative motion has tlic following cspaiided 
form : 

CILllY 

" C . . .  A - 5 -  A - - 5  A -+ 
p = S(<,n,6,t)ip + q ( 5 , v y c , t ) j p  + c ( 5 , n y c r t ) k 3  (-.- ' 3 - 4 )  
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FIGURE 2.3I.-POSITION AND VELOCITY RELATIVE TO INERTIAL AXISSYSTEM 

ClGUilE 2.3-2.-POSITION AND VELOCITY RELATIVE TO A MOVING REFERENCE FRAME 
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A h  
where +,, jP,\ ue the mi; 
hies for an observer in the Inertial Axis System. 

vectors of the moving axis system-timedependent quanti- 

The velocity of the inass element relative to the moving axis system is'computed from 
equation (23-4) as 

This expression describes thr: vetocity (measured relative to the I.!- axis system) of the 
mass element located at 3 at  time t and located at e, q, r at time t = to; equation (2.3-5) also 
defmes the operator 6/6t as the time rate of change apparent to an observer in the mowing axis 
system. 

-- 

The docity relative to the Inertial Axis System, equation (2.3-2), may be computed 
from the motion as given by equation (23-3). The result is 

where 
A A A + 

w E w i  + w j  + w K  P 5 P  n P  C P  (2.34) 

is the rotation rate of the moving axis system relative to the Inertial Axis System. 

2.3.2.2 Moving axis system .- ' a m a n  reference Fame. -The equations of the preceding 
section describe motion in terns oi 21: axis system which is translating and rotating with the 
velocities dzJdt and D, relative to t .  : Inertial Axis Syster;;. In this section six conditiarrs are 
introduced which determine the compob..-rlts of GJdt and en. These cmditions make the 
mobing axis system a mean reference frame, references 2 4 a d  L-5, and cause the motion of 
the moving axis system to be such that it is readily ideF tified with a rigid body motion, Le., 
the motion appropriate for a Wy-fixed axis syztem. 

The six conditions are derived from the kinetic energy associated with motion relative to 
the moving axis system, viz., 

and are obtained by minimizing this kinetic energy with respect to the components of dT;d /dt 
and 5,. The minimizing conditions are represented syntbolically by 

(2.3-9) 
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Expandiq the dative veldties appearing in the kinetic energy, equation (2.340, using 
quation (2.3-6) kads to 

Now, applying the m h h k h g  condjtiolls, equations (23-9), to tbis expression for the kinetic 
energy yields two vector equations repnsentirp six conditions which may be imposed on the 
six compoaents of cg /dt and SF These conditions are found to be 

(2.210) 

and 

where M is the total mass of the ahcraft, Le., 

lf z Jv PAdV 

and is the position of the center of mass relative to the origin of the mavir- aKis system, Le., 

The moving axis system is seen to be a mean reference fmne if its motion is determined 
by the Wowing two requirements: 

I )  The momentum of a point mass M at the center of mass moving with the moving 
axis system is equal to the total hear momentum cf +he aimaft, Le., 

2) The aF@r momentum about the origin of the moving axis sytem, of the aircra:t, 
as a rigid body, moving with the moviag axis system, is equal to the total angular 
momentum of &he aircraft about the otigin of the noving axis system, Le., 

1 + dF' P x - p dV. J v  dt A 

Thus, the moving axis system is a mean reference frame if its coordinates are taken to be 
Lagrangian coordinates (Le., fixed to the undeformed aircraft), and if the momentum of the 
aircraft, as a rigid body, is equated to that of the aircraft a? a deforming k y .  
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The physical significance of equations (2.3-10) and (2.3-1 1) is further borne out when 
the origin of the moving axis system, now a mean reference frame, is a t  the center of mass of 
the aircraft and is taken to be the Body Axis System. When these equations'are expanded on 

+ dr' and n 

F x - p.Cl': iB 1, dt A 
Imp - IxlQ - I X Z R  = 

(2.3-1 3) 

A + 
p x *'p dV I Z Z R  - IzxP - IzyQ = k B  j-. v + dt A 

The left-hand members of equations (2.3-1 21, those following from equation (2.3-IO), 
express the components of momentum of a point mass moving with the velocity . the 
aircraft center of mass and equate these components to the coriiponents of tot& linear 
momentum of the aircraft. The left-hand members of equations (2.3-Id), those following 
from equation (2.3-1 1): express the components of angular momentun: of a rigid body 
rotating about its center of mass. The moments and products of incriia appzaring in 
equations (2.3-13) are computed for the shape of the aircraft at the present instant of time. 
These quantities are time dependent and have different values at a later instant of time. 

If equations (2.3-1 2) and (2.3-13) are differentiated with respect to  time, d/dt, then tney 
can be equated to the components of the applied force resultants at the center of mass, ie., the 
total force and couple resultants of the applied forces. The resulting equations can be inter- 
preted as equations of motion governing rigid body degrees of freedom. If, further, as an 
approximation, the time dependence of the moments and products of inertia aie ignored, 
then these equations reduce to rigid body equations of motion. This approximation is used 
in the FLEXSTAB system analysis. 

2.3.2.3 Mean reference frame constraint conditions. -For the structural theory cf sec- 
tion 4, the motion of an aircnft, equation (2.3-1 ), niust be expressed in krms of a displace- 
ment field, figure 2.3-3. The displacement field is ktroduced in terms of the Reference Axis 
System by expressing the aircraft motion as follows: 

where? is the position of a differential mass eiement relative to the Inertial Axis System; 
rb(t) i s  the position of the center of mass relative to the Inertial Axis System: 
A 

- -  CI . w -  n - -  * - - -  A 

r ( X , Y 9 Z 9 t )  z (X-Xc.,)i t (Y-YC,;) j  t ( Z - Z C G ) "  (2.34 5 )  
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is the position of the differential mass element da t ive  to the center of mass with the aircraft 
moving ;is an undeforming body, %,,, Y a ,  being the Lagrangian coordinates of the 
center of mass of the unSGormed body in the Reference Axis System; and>(X, Y, Z, t) is 
the elastic &placement of the differential mas element from its location in the undeformed 
dupe to  its location in the deformed shape. 

The components of't'contain only the ~agrangim coordinates of a differential mass 
element and the coordinates of the center of mass of the undeformed shape of the aircraft; 
the zomponents off therefore, are independent of time for an observer in the Reference 
Axis System fixed to the undeformed shape. As a result of this, the velocity of a differential 
mass element is found from equation (2.3-14) as 

r. 

C I I I C I  

(2.3- 16) 

Replacing the velocity vector &$fit in the relative kinetic cnergy expression, equation (2.3-8), 
by the velocity vector S a & ,  the components of 6 J d t  and 
relative kinetic energy. These operations make the Reference Axis System a mean reference 
frame and lead to the following conditions on the displacement field: 

are chosen to minimize the 

and (2.3-17) 

The conditions on the dispiacement field given by equations (2.3-1 7) are used conversely 
to make the Reference Axis Sysicnl a mean reference frame. Thus, when the displacement 
field represents position relative to an unueforme i shape fixed with respect to the Reference 
Axis System, as in equation (2.3-141, and when the displacement field satisfies equations (2.3-1 7). 
the Reference Axis System is a mean reference frame. From this point of view (the one adopted 
in the FLEXSTAB system), equations (2.3-1 7) can be interpreted as six constraint conditions 
constraining the motion of the Reference Axis System relative to the moving aircraft. For this 
reason equations (2.3-1 7) are called "mean reference frame constraint conditions." 

Requiring the Reference Axis System and, therefore, the other body fixed axis systems 
to be mean reference frames has several interzsting consequences. Equations (2.3-1 7) show 
that the motion described by the displacement field does not contribute to the total linear 
and angular momentum as measured by an observer fixed to the Re - rence Axis System. Also, 
if the kinetic energy of the aircraft is computed using equation (2.3-1 6) and if the mean 
refercnce frame constraint conditions are applied, the kinetic cnergy is expressed as a sum. 
the kinetic energy of a rigid aircraft moving with the Reference Axis System plus the kinetic 
energy arisins from the displacement field, i.e., 
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3. where I IS the inertia tensor and is a function of the displacement field. Nso, since them is no 
kinetic energy due to rigid body motion relative to the Reference Axis System, it follows that, 
bamng the existence of linkages and thermal deformation, motion relative to the Reference 
Axis Systcni is always accompanied by a change in strain energy; thus, a displacement field 
satisfying eqmtims (2.3-17) might properly be termed an elastic displacement field. One addi- 
tiondl observation is that the total energy of the aircraft apparent t o  the Refemnce Axis 
Systcni (Le., the sum of the strain energy and the relative kinetic energy) is an absolute mini- 
mitni. This observation follows from the above and the theorem of minimum strain energy, 
page 289 of rcferenze 2-1. 

The foregoing characteristics of motion relative to  a mean reference frame are note- 
worthy; but the characteristics listcd in section 2.1 and demonstrated in section 2.3.3.2 
are those of primary importance to the FLEXSTAB system analysis method, vit., the motion 
of the body fixed axis systems can be identified with that of a rigid body when the motion 
of the aircraft relative to them satisfies the mean reference frame constraint conditions. 

7 Deformed position 

/ Undeformed position I 

Center r,f mass 

after deformation 
X' before and 

Ft GU R E 2.3-3. -EL ASTt C DtSPL A CEMENT 

23.2 4 Approximate mean reference frame constraint coriditbris. -The FLEXSTAB 
system is formidated using an approximate form of equation (2.3-1 7). i.e., the constraint 
condition which determines the n t c  of rotation of the mean refcrence frame. The approxima- 
tion consists of setting to zcro the cross product of the elastic displacement vector with its 
time ratc of change i.e., 



This is a valid approximation if the two vectors; and 63/6t are nearly parallel; and, for 
conventional aircraft structural components, this is a valid assumption. Thin lifting surfaces 
such 11s wings and tail surfaces are platelike in that the dominant elastic displacement and 
displacement rate are both normal to a surface and hence parallel. Slender body shapes such as 
a .-xselage are beamlike, with the dominant elastic displacement and displacement rate normal 
to an elastic axis and in only one d i r e c t i ~ ~ .  Introducing the above approximation into 
equation (2.3-17), the constraint condition detzaminingthe rotation rate of the mean axis 
system becomes 

The constraint conditions, using the above approximations, are integrable with respect to 
time and iire expressed as follows: . 

J dPAdV = if, 
V 

and 

J x i l p  d V  = 75, 
A V 

-L -. 
where C1 and C2 are constants of integration. The constants of integration are set to zero and 
the constraint conditions become (cf., equations 4.73 and 4.74 of reference 2-6) 

and 
+ 

F x = 0 . I, + 
(2.3-1 8) 

The displacement vector contained in equations (2.3-14) is required to satisfy these condi- 
tions. Since the elastic displacement field specifies the deformed configuration of the aircraft 
relative to an undeformed configuration, the six conditions represented by equations (2.3-1 8) 
determine a coordinate system in which the coordinates of the undeformed differential mass 
elements are independent of time, Le., 

-+ + . - - I  

s = F(X,Y,Z) .  

The motions of a flexible aircraft described by equations (2.3-1) and (2.3-14) are related as 

(2.3- 19) 

c - 2  
where X, Y, Z are the Lagrangian coordinates in the Reference Axis System (Le., the 
coordinates of the differential mas elemenis in the reference, undeformed configuration). The 
constraint conditions, equations (2.3-1 8), therefore provide the basis for introducii~g a 
body-fixed axis system relative to which elastic deformation is measured. 
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2.3.25 Rt:fiarc*trc*c utid pmirrbuliori t w f i o t i s .  - I n  tlie stability analysis pdortiied by thc 
FLEXSTAB system. tlir motions described in tlir preccding are evalua ted w h w  at1 aircraft is 
in either of two states of tiiotioii: ( 1) a steady referewe flight cotidition arid (2) an unstcady 
pr'rturbtltioii motioti aboiit the steady iiiotioii of tlw reference tliglit condition. I n  tlic steady 
reference tligit cotidition a diffc.renti;tl tiiass rleiiicnt of the aircraft has a velocity relative to 
the liiertial Asis System which is given by 

-L 

wliere V C I  2 

Body Asis System relative to the liiertial Asis System. equations (2 .2-3) .  I n  tlie perturbation 
tiiotioii the perturbrttion velocity of the differerithl iiim rlcriietit is given by 

and Sl are ttie steady trmstationat and rotational vetwitir's of tlie 

This espressioii is replaced in the FLEXSTAB system by tlie following approxiuiiation. which 
iieglects the cross product of rotation rrtte atid perturbation displacement: 

-f 

(2.3-20) 

The consequences of the approsinistion introduced by equation (2.3-20) are apparent 
wlieri t l i q  are applied to the k'.wtic energy of 911 aircraft. The kinetic energy. when the 
per rurbstion velocity is gtveti by equation (2.3-20). appears as follows: 

K = Kl + KF (2.3-21) 

where 

is the hinetic enerm for the steJdy referewe fl i&W condi. ioii and 

is the perturbition ki:ietic e n e r a .  Tlie neglected kinetic energy is given by thc fcllowi,ig 
expression : 
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The approximation, equation (2.3-20), is seen to  cause part of the perturbation kinetic 
rnergy to be neglected; namely, that which arises irom rigid-body rotation in cmjunction 
with a perturbation change in shape. 

The kinetic energy which is retained in the formulation is separated into a sum of terms 
each having a clear physical significance. For the reference flight condition 

where (2.3-24) 

is the reference kinetic energy arising from rigid-body translaticm and 

is the reference kinetic energy arising from rigid-body rotaiiorl. uor the perturbation motion 

where 

is the perturbation kinetic energy arising from rigid-body translation, 

is ti.G perturbation ki:idic energy arising from :igid-body rotation, and 

is the perturbation kinetic energy arising from elastic ddormation rate. 

The error intoduced by the approximation, equation (2.3-20), is related to the 
Perturbation kinetic energy arising from rigid-body rotation. Therefore the validity of the 
approximation may be evaluated by examining the magnitude of the following ratio: 

+ -b 
+ w X (2;1 + zp; [ (w l  + :,I x d I p  d V  A K  P P A- -P = 

-b (2.3-26: 
K ( U J  -+ + [ ( u p  -I i z , ) x  & r,] x gl)pAdV I, P 
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Carrying out the indicated integrations leads to a comparison in terms of ph:/jical compo- 
nents. The denominator of equation (2.3-26) becomes 

where 1x>i 1.  I y y ~  , 1 z z  I ,  I x z  1, Ixyl, Iyz 1 are the moments and products of inertia in the 
reference flight condition and p, q, r components of perturbation rotation rate cxpanded or1 
the Body Axis System, i.e., 

The numerator of equation (2.3-26) becomes 

+ 21yz (Q, + q : ( R ,  - + : i 
P 

where [xxP,  Iyy , Izz , Ixzp, Ixy P P9 P' 
of inertia arising from Fzrturbatior. elastic deformnth.  

l y z p  are perturbations to the moments ar?d products 

The moments of inertia for conventional zircraft configuratiom (Ixx 1 ,  Iyy , Izz ) in 
the reference flight condition hill be at least an order of magnitude isrger than thc perturba- 
tions Ixx , Iyy , Izz . it fdlows therefore that the contribution to the error from the 
terms containing these quantities is negligible if the components or rotation rate In the 
reference flight condition (PI, Q1, RI) have at most the same xder  of rragnitude as their 
perturbation values. p, q, r. Also, if the elastic deformation in the reference condition is small 
in comparison to its overall dimensions, all products of inertia contained in the ratio with the 
exception of Ixzl ara small in compriscn to the moments of inertia in the reference flight 
condition. The products cf inertia terms therefore contribute no addiliond restrictions on the 
validity of the approximation; and the conditions which must be satisfied for equatiori 
(2.3-20) to yield ;i valid approximation are seen to be as follows: 

P P P  

2)  Ptxturbatio!i changes to thc dimensions must be an  ord:r 01 magnitudc Iw t1i:tn tlic 
dinitvisions of tho aircraft i n  the reference flight condition. 

These conditions 3rd clsually satisfied in thc CitsC of I~r 'gc aircraft: hcncc. Lquatloii (2 .3- :0)  I \  

taken !c be J valid approxirna'ioii for the FLEXSTZB 1 .em. 



The kinematic appwhnation, equation (2.3- 18). and the perturbation expamuon about a 
steady reference tlight condition, permit the constraint conditions, equations (2.3-17), to be 
expressed pt fdows: 

For the rtfenncx fQ@t condition, 

(2.3-27) 

* e - - -  
wllcre r = r QC, Y, Z) descn’bes an undeformexi Confiration of the airad? -temed the J i  

sbape4nd dl is d s f m t i o n  in the reference flight condition; wi&, for the disturbed 
flight Condition, 

and (2.3-28) 

where?. =Tl(%, ?, 2) desqibes the configuration of thc aircraft in the reference flight 
condition. 

2.3.3 Fluid Motions 

This portion of the kinematic description is aimed at developing formulas describing 
certain aspects of the fluid motion determined by the geometry of the aircraft and its motion 
relative to the Fluia Axis System. 

23.3. I Surface bounakty condition.-The surface of the aircraft having the spatial 
(Le., E u l e d )  description, 

G ( X , Y , Z , t )  = 0 , (2.2-7) 

represnts a solid boundary to the fluid; therefoit, the velocity of the disturbed fluid must be 
such that fluid particles do not penetr ite the aircraft’s surface. This condition represents the 
surface boundary condition for the fluid flow problem and is expressed analytically for fluid 
particles iocated on the surface and having Eulerian coordinates satisfying equation (2.2-7) as 
follows: 

(2.3-29) 



where v' is the fluid velocity relative to the Reference Axis Systec,. There is an additional 
requirement that skin rxLiles at the surface of  the aircraft must remain at the d a c e  as it 
undergoes motion dut :? r:dstic deformation or control surface deflection. This surface 
bouc3;lry wndition for skin partic!= whose Eulerian coordinates ~ t i s f y  eqution (3.2-7) is 
expressed as: 

(22-30) 

where 6̂ a/at is the velocity of skin particles retative to the Reference Axis System. Combining 
equations (23-29) and (2.3-30) leads to !he fdlowing surface boundary condition: 

where 

is the unit vector n o d  to  the surfac:. 

Recalling the velocity re!ationship 

the surface boundary condition is expressed is 

a t  t=to 

(2.3-3 1 ) 

(2.3-32) 

(2.3-33) 

whereyis the position yector for a fluid particle on the surface. This form of the houndary 
condition is appmpriate to the stability and control problem because the fluid velocity is 
related by c.p:tion 12-3-33] to the aircraft's velocity, elastic deformatiori, and control sur- 
face Erilectians. The boundary condition is further developed by letting the fluid velocity 

be exprssrd as a perturbation 'o a uniform freestream, 

6 = uc-: + 3 (2.3-31) 

where U is the steady translational velocity of the Fluid Asis System relative to the Incrtial 
Axis System. The vector 

is the nondimensional perturbation velocity of the fluid cxpanded on the Reference Axis 
System. Substituting cquations (2.3-34) and (2.3-35) into the surfrrce boundary condition. 
equation (2.3-33) leads to 

l +  -+ -+ (j; -L 

v = -r! + e(\'.. t w x Y t --) . I? 
n x x 6 L  ( 2.3-3h) 



where 

+ +  
v E n o v  n 

is the nondimensional component of perturbation velocity normal to tk surfsce. 

(2.3-37) 

The velocity vector in the brackeb of equation (2.3-36) represents the velocity, relative 
to the Fluid A L i  System, of a point on &.e deforming surface of the aircraft, Le.. 

Therefore, equation (23-36) may be expressed as 

(2.3-39) 

while equation (2.3-33) becomes 

These two results, i.e., equations (2.3-39) and (2.340j, lead to a geometric interpretation of 
the nondimensional velocity component v,, relating it to the angle through which the 
freestream velocity vector G m u s t  be perturbed, making the path lines of fluid particles lie 
along path lines traced by points on the surface. This angle is termed the flow incidence angle. 

The floiv incidence angie is viewed in figure 2-34 for three cases: ( I )  flow incidence due 
entirely to gometric slope of the surface, (2) flow incidence due entirely to the velocity of 
the surface along the surface normal, ana (3 j a a n h a t i o n  of ( 1 ) and (2). Taking positive 
flow incidence to be a positive rotation aboiit the Y-axis, the flow incidence in cases ( 1 ) and 
(2) is as follows: 

+ - +  

(2.3-41) " x  Case(l): sinY = -n v = 
1 .  

case (2): 

When cases ( I )  and (2) are combined, i.e., case (3) shown by figure 2.34,  the flow incidence is 
given by 

Case (3): s i n l  = s i n ( y l  t y 2 )  
(2.3-42) 

= s i n y l  cosy t c o s y ,  s h y ,  
2 
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Case (1 1, flow incidence due to surfam shape 

Case (2). flow incidence due to surface motion 

FIGURE 2.3-4.-ANGLE OF FLOW INCIDENCE 



where ut1 + u,) 
COSY, = 

I 01 

and - W ( l  + u 1 
COSY - 2 

2 N2 1 

2.3.3.2 Linenrized swface boundary condition. -The FLEXSTAB system is based on 
an aerodynamic theory (section 3) which is a linear fmt-order approximation. This is obtained 
by assuming 

(2.343) 121 = O(E1, €<e1 

The themy is applied in the FLEXSTAB system to bodies with nonplanar s u r f . .  H ,l.ch may 
have any dihedral angle between 0 and 2r radians; thus, tbe components of the unit normal 
vector ny and n z  have the following ranges of magnitude: 

-l<n <1 - Y- -l<n <1 - z- 
Applying these orders of magnitude to equation (2.3-39), it follows that 

where Vs and Ws are the components of Ts expanded on the Reference Axis System. 

Expanding the surface boundary condition, equation (2.3-39), leads to 

CI 1 s  S v = -  n + -(u n X + v ny + wanZ) n x u  

and assuming that 

(2.344) 

(2.345) 

(2.346) 

(2.3-47) 

(Lc.. the Xcomponent of surface velocity arising from the rotation rate and the elastic 
deformation rdte is of order e compared with U) a first-order approximation is obtained by 
deleting ( U S / U ) n ~  = O(e 2 ), 

(2.3-48) 
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Recailing the expressions for flov: incitknce angle, Le., equations (2.341) and (2.342). these 
expnssions are seen to reduce to-;he following firstder approximations: 

s i n  Y l  = Y 1  s i n  V 2  = Y 2  

cos 1 1  = 1 cos r 2  = 1 

and 

From these approximate formulas and equation (2.3-48) the fmt-order approximation to the 
flow incidence angle is found to be 

c 

(2.349) 

The process leading to this linear result is considered in detail in the following develop 
ment. Case (1) and case (2), shown by figure 2.3-4, represent the two mechanisms whereby 
flow incidence arises at the aircraft surfacx. In case (1) the flow iwidence arises from the 
p m e t r y  of the surface when that geometry in the Fluid Axis Xystem is independent of -time. 
In case (2) the flow incidence arises from motion of the surface relative to the Fluid Axis 
System. In case (3) the flow incideiice arises from a simultaneous Occurrence of the two 
mechanisms of cases ( I )  and (2). The surface boundary condition, equation (2.346), is 
linearized in the following by fmt linearizing the two specia! forms obtained for cases (1 ) and 
(2). Oace these two special cases are linearized they are combined to obtain the linearized 
boundary andition for the combhed, generai case. This approach is used to clarify the 
development of the linearized boundary condition. Since the results are linear equations, the 
combined linear boundary conditions are obtained with no loss in generality. 

2-3.3.3 Flow incidence for o fued surface geometry in the Fluid Axis System- 
Grse (I).-As shown by section 2.3.3.2, the X-component of the unit vector normal to the 
surface is the quantity which gives rise to flow incidence in case (1). Consider, therefore, the 
mechanisms which may influence the unit normal vector, viz., the rotation of the surface due 
to elastic deformation and due to control surface deflection. The unit normal vector is 
expressed as * . . , - -  c - -  * - - -  

-t n = n(X,Y,Z) + i f E ( ~ , ~ , ~ , t ) x n ( x , y , z )  

..,....., e t , , -  
+ b , ( X  ,Y ,  z , t I xn tx  , Y ,  z I (2.3-50) 

where 

i? is the unit vector normal to the surface before elastic deformation 
and coptrol surface deflection, 
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BE = 1 / 2 b x d  is the d a c e  rotation due to elastic deformation, and 

8 is the suriace rotation due to control surf- dcf&ction. 

 he X-campontnt of the unit nomui vector is found from equation (2-3-50) to be 

C 

where em, 
control surface rotation expanded on the Reference Axis System. 

are the components of elastic rotation and 6cy, 6 a  are the components of 

An order of magnitude analysis of equation (2351) is msde using the aSSumptiazlS listed 
n -is of order c and % andE'z are of order unity, it by equations (2.3-43) and (23-44). 

f- from tht idependence of% imdgthat 

6cy = e(€) ,  6cz = O(E). 

The control d a c e  rotations are expressed in the FLEXSTAB system in terms of three 
independent control surfaces. Therefore equation (2.3-51) is expressed as 

where "ex, 
are, at most, functions of time and govern the amplitudes of the control surface deflections. 
The amplitudes of the control surface rotations, 6 , ~  and 6,2, are, however, restricted to the 
order of e as in equation (2.3-52). 

%X relate n x  to control surface deflections and the quantities 6,, 6,,-6, 

Combining tr\e first of equations (2.3-41) with equation (2.3-53) and using the first order 
in I approximation for the sine function, viz., 

s i n  Y, = VI, 
i2.3-54) 

the linearized boiindary condition in terms of flow incidence arising in case ( I  ) is found as 

Y 1 =  iix + O E Y i i Z  - 'EZ'Y 
+ n 6 +naX6a+ n 6 eX e rx r. 

(2.3-55) 
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2 3.3.4 Flow incidence atising/iont surface motion tehtive to the Fluid Axis 
Sysfem-Cme (21.-Comider the expaiided form of the surface boundary condition for case 
(2). viz., the second of equations (2.341). Introducing the expanded unit normal vector 
from equation (2.3-50) leads to 

+ &CZ 13 x 1 EZ -e ii - 6cxiiz + (e  - 1 s  
U EX Z Y z -  - -{v cii, 

(2.3-56) 
+ wSEii, + e E p Y  + dcXiiy - (eEy + & c y ) i i x ~ ~ .  

In the FLEXSTAB system analysis, surface rotations about the X-i\xis due to elastic 
deformation and control surface deflections are assumed to have the same order af 
magnitude as the rotations about the Y- and Z-axes; thus, 

and 

%x = O ( € ) .  

(2.3-5 7) 

This assumption in conjunction with the assumed E order of rtiagnitude for the following 
surface! velocity component ratios: 

*s 
= O ( E )  and = O ( E )  

VS 
ff 

leads to the following first order in E approximation for the flow incidence: 

I s- S- 
U 2 I,= - 4 V  ny + W n 1. (2.3-58) 

This result is related to motions of the aircraft by expanding the velocity componenis l@ 
and Ws. 

The velocity components and w. describing the velocity of the surface relative to 
the Fluid Axis System, are obtained from equation (2.3-38) as 

vs = ,(V 1 - ZR + ZP + Gdy/Bt) 0 
(2.3-59) 

U = $(-W.- kP - RQ + &dz,’6t)  

The quantities appearing in t h e  expressions are as follows: The coordinates-in the 
Reference Axis System-of the surface point relative to the center ot’mass, i.e., 

2-27 



x 5 x - X c g V  

cg ’ P Y - Y  (2.3-60) 

and 

the components-expanded on the Reference Axis System-of velocity of ?he surface point 
relative to the Reference Axis System, Le., 

and the components of velocity of the Reference Axis System relative to the Fluid Axis 
System expanded on the Body Axis System, Le., 

From an examination of equations (2.3-60), (2.361) and (2.3-62) it is apparent that the 
velocity components, as expressed by equations (2.3-59), are in H form which is a mixture of 
Eulerian and Lagrangian coordinates. ExpFessions entirely in terms of Lagta~gia~ coordi- 
nates are found by expressing the location of the surface point as 

so that equations (2.3-59) become 

(2.3-63) 

The development to follow - - -  is based on the mixed form presented by equation (2.3-59) 
treating the variables X, Y, Z as Eulerian coordinates while continuing to treat the velocit: 
compjents  6dy/6t and 6dZ/6t as quantities defined in terms of the Lagrangian coordinates z, Y, 2. 

Consider each of the terms contained in the linearized surface boundary condition, 
equation (2.3-58), letting the elastic displacement field be represented as 

(2.3-64) 
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where& is a mode of structural deformation and % is the amplitude of modal deflection. 
The mode of deformation is chosen such that 

I'QJ = O(1) 

for points X, Y, Z at the aircraft surface. Also, noting that 

(2.3-66) 

whereyis the reference chord and b is the span of the aircraft it follows from the fact that 

and from the independence of the velocity components V, W, P, Q, R and ii that 

A (2.3-67) 
A .  f t . / u  = O(&). 
1 1 

The linearized boundary Condition, equation (2.3-58), for case (24 therefore, is expressed as 
A 2X" 2 2 "  b' + 4 .  ;.)E + IY 1 Y y2 = i CCS - -R + b 

(2.3-68) 

where a = W/U is the approxima? angle of attack, and fl 3 V/U is the appoximate angle of 
sideslip. 

2.3.3.5 Combined linearized surface boundary condirion-Gzse 131. -The combined 
linearized surface boundary condition i s  found by simply adding equationb (2.3-55) and 
(2.3-68) to obtain 

(2.3-69) 

Equation (2.348) suggests a convenient and compact form for the surface boundary 
condition to be used in section 3. Each of the quantities, multiplying the small parameters 
cy, 0, P, Q, R, ui in equation (2.3-691, is of order of n.agnitudc unity. and can bc incorporatcd 
into three terms having the appropriate orders of magnitude by letting 

A A A +  
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(2.3-70) 

and 

+ n 6 (2.3-71) -.. 
rX r n = nx + eEYnZ - e,,ii, + n 6 + naX6a X eX e 

where 

while (2.3-72) 

The surface bwndary condition is expressed now as the sum of three tPrrlls as 

This form of the surface borltidary condition is used in section 3 to  develop the linear 
aerodynamic theory used in the FLBXSTAB system. 

2.3.3.6 Dynamic pressure and Mach number variations. -The aerodynamic analysis of 
section 3 requires the values of the undisturbed freestream dynamic pressure and Mach 
number relative to two different reference frames-the Fluid Axis System and the Reference 
Axis System. The values of the dynamic pressure and Mach number measured in the Fluid 
Axis System are taken to be reference values and the values apparent to an observer fixed to 
the Reference A5s System are expressed as variations from these reference valuc ,. 

The freestream dynamic pressure and Mach number in the Fluid Axis System are 
given by the definitions 

(2.3-74) 

while for an observer at the positionTrelative to the airraft center mass and fixed in the 
Reference Axis System the freestream dynamic pressure and Mach number are given by 
the definitions 

and 

- - 1  -b -+ q = T P m V  v 
(2.3-75) 
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where 0 and 3 are defined as in section 3.2.3but evaluated in the undisturbed stream. 
Introducing the relatioc,hip between 0 and V, equation (2.2-4), 

and A 

Assuming the comknents of v~ and 3 are small enough that their products may be 
igtiored, fmt-order expressions for the dynamic pressure and Mach number are found i?: 

(2.3-76) 

where P and 7 are the coordinates of the point of evaluation relative to th * center of m?*s 
in the Reference Axis System. The variations in dynamic pressure and Mdcli number are 
therefore seen to  be 

2.3.4 Wake Motions 

In addition to the surface boundary condition, the aerodynamic problem involves 
boundary conditions which must be satisfied on the surface of the aircraft's wake. The 
kinematic description must therefore contain the location of wake surface. The wake, a 
surface which emanates from sharp trsiling edges of lifting surfaces, may be ider,!ired as a 
vnrtex sheet which, by definition, forms a boundary in the flow which fluid particles do not 
penetrate. The actual wake surface location is therefore not known a priori, because its 
location depends on thc solution to the problem, viz., the motion of the fluid. If it is 
assumed, however, that the freestream is not disturbed by the presence of the aircraft or the 
wake itself, the wake location can be descriLzd a priori. This fictitious wake surface is 
termed the Mean Wake Surface, ar.d in formulating the aerodynamic problc m the Actual 
Wake Surface is considered to be ckfor5ed about the Mew Wake Surface. The effect of this 
deformation is negligible for the level o f  dpproximation used in the aerodynamic theory. 
The kinematic description therefore need cnly iocate the Mean Wake Surface. 
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In section 3 the Mean Wakf Surface is taken to be determined from the velocity of the 
aircraft at the instant of time mder consideration. As a result, it is skghtly displaced in the 
Xdirection from the surface actually swept out by the paih of the trailing edge oC a lifting 
surface, such as a wing, undergoing unsteady motion (fig. 2.3-5). The paths for this and 
other lifting surfaces are deterniined by the known histrxy of the aircraft's rigid-body and 
elastic deform3on motions up to the instant of time irnder consideration, to, when the 
Fluid and Body Axis Syslems are taken to be coincii .fit. For the Mean Wake Surface to  be 
a vortex sheet in the undistributed frtestream, it must be displaced from the surface of the 
trailing edge paths by a distance AXo = (u - U) X,/U, where X, is the point where the 
displacement is measured and 0 is the average forward velocity (fig. 2.3-5). At distances Xo 
where fluctuations in the wake surface are of significance in the aerodynamic theory, it will 
be shown that AXo/X, and AXo/C' are small-small enough, in fac: thatfhe effect of the 
displacement AX, is shown in the following section to be negligiblc. The aerodynamic 
theory presently used in the FLEXSTAB system therefore asslimes that the Mean Wake 
Surface is coincident with the locus of trailing edge positions. 

e 
Path of trailing edge Y- 

- 7 = - x u  4 -I 
L M e a n  wake surface 

FIGURE 2.3-5-MEAN WAKE SURFACE 



3.0 AEROCPWAMICS 

3.1 INTRODUCTION 

The aerodynamic thzory used in formulating the FLEXSTAE system is a linear, 
first-order, small perturbation approximation to unsteady, inviscid subsmic or scpenonic 
flow. Tlie theory is valid provided the unsteadiness of the flow has reduced ’ equencies 
small in comparison to ur\ity-the low frequency approximation of refprince 3-;, chapter 1. 
The theory is applicable tc; arbitrary aircrai: configurations which cdn be idealized as a 
collection of componr Jts classed either as thin bodies or as slender bodies*, figure 3.1-1. 

F ,  GL’fiF 3.l-l.-TYPlCAL THIN BODY-SLENDER BODY CONFIGURATION ARRANGEMENT 

*Classification of configuration components as :hin or siedrr bodier: is based on thc rehtive 
magnitudes of their thickness and aspect ratios. A thin body is esselitisllv planar having an  
aspect ratio which iri an order of magnitude greater than its thickness ratio. 1 he aspcct ratit)  
of a slender body is approximately equal to its thickness ratio, a n d  its actual shape is 
idealized as an equivalent body of revolution warped by a cambered centerline. Wing.,. 
struts, fins, etc., are ternled “thin bodics.” Fusehges;, naccllcs. pods, and t ip tanks ;ire 
termed “slerider bodies.” 
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llic iincar acralyiianiic tliroi y is dcrivcd from tlic nonlincar tlwory g,vcniing 
u n s t d y .  cwitinucna. uiwpxatcd. iiivkid. dish tic. and irrotatioiai ilow as suiiiinarixcd 
in stytion 3.2.2. The rkrivatioli follows fmin 3 xqucricx of two asymptotic expansions. llic 
iionlincar llicory is cxpndccl in section 3.2.5 in tcrins of' small pmnictcrs which govern tlic 
magnittdcs ol' thc. Itisturbmcc! ,wdu~r.d in a uniform lluw by thc prcsuicc of thc aircraft. 
In this t X ~ t i A 1 8 .  the uistcadiiicsi of a11 timevarying pni i~ tcrs  may have mducr.d 
Crcqtimcim with mkrs of iiwgnitudc cyu;ri to unity. A sluond asyaipiotic cxpmsioi) is 
wmed wt in wctimi 3.2.0 wlrrcin thc snall panmeters arc thc rcducz.t! lir.qucncin of the 
tiiiicwwyitig parameters appring in the first expnsioii. 111s cxp;rnsioa lea8 to tlk low 
frtqucncy unstcrdy a c d y  mmic theory. 

All pratiictcn pvcniing thc niagnitudcs of the flow listurknccs arc d a t e d  to 
quantitia contained i:i tlic surfacc~ b ~ ~ i i J ; l t y  condition dcnvcd in wction 2.3. As \howti by 
equation t2.3-3f~). tIK quantities Imdins to flow disturbitnLm fix.. llow iricidcncc at tlic 
aircraft's u1rr;lsz.b a r k  fmiii two swrws - thc Swmctric slwpc of the aircraft and thc 
motion of :lie 3iwraft surface rclativc to the uniform frcxstrcam. Row incidcnrs duc IO 
rchtivr. cuticw of thc surface is rrlaterl to the motion pitrainctcrs commonly uscd in 
shbility iird control tewhiiology, is.. angle of attack. angle of sideslip. etc. 

Tlie gmiuctric ,hap% of the thin and slender bodies arc dexribcd analytically in terms 
of coonjinatcu on "mmn" surt';lc.es and lines which arc parallel to thc fnxstwim. The 
geometry of a configuration is themfore described entircly in terms of formulas of the 
following form: 

where 6~ is the dimension of the NLh body in directions which are trmsversr: to the 
free* zun, Fy(X.Y.Z) is :t dupe function which has ail order of magnitude equal to unity 
for points (X.Y,Z) on a mean surface or line, and EN is a small nondimensiondl parameter. 
The entire geometric slnpe collapses to mean surfaces and lines which are aligned with the 
fiestream when all of the parameters EN are set to zero. 

Formulas describing the thickness, camber, and twist of thin lifting surfacs are 
expressed in terms of cocrdinates OR planar mean surfacxs, figtm 3. I-?.  Ideally, the mean 
surfaces have generdtors which lie at the area centroid of each of the airfoil cross sections of 
thin bodkr, Fgurr 3. -L. The planar mean surfaces cannot be placed at the mathematical 
mean su+-e tor thin Wies having a smoothly varying dihedral, and thin aerodynamic 
bodies wit11 varying dihedral are approximated by a sequence of connecting planar mean 
urfaces. 

Slender bodies are described about mean centerlines. The components of a configura- 
tion which arL designated as slender bodies are idedlized as bodies with circular cross 
sections, the areas of which are equal t 3  the cross-sectio-ial areas of the actual components. 
The centers of the circular cross sections nre located at the area centroids of the actuai 
=dons.  figure 3.1-3, and the mean centerline pLtmlle1 to the freestream is at the mean 
location of the section 3rea centroids. The deviation of the section area centroids from the 
mean centerline describes the body camber. 
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Actual thin W y  surfs L 9  

NGURE 3.1-2.-TfllN BODY MEAN SURFACE 

- 
seaion centroids 

centerline 
arcuiar surface 

cross sections 

FIGURE 3.1-3.-SL€NDER BODY #EAN CENTERLINE 
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The effects of interference flows between the thin and slender bodies making up a 
configuration are accounted for on mean interference surfaces. In the case of thin bodies, 
the mean interference surfaces are identical to the. thin body mean surfaces shown by figure 
3. I-?. In the mx of a slender body, the meiw iweiference surface is a cylir;drical surface 
approximating the actual slender body surface i. th: region of dominant interference flow, 
figure 3.14. 

Mean interferena 
surface 

FIGURE 3.14-MEAN INTERFERENCE SURFACE OF A SLENDER BODY 

The mathematical problem posed by the linear theory developed in section 3.2 consists 
of a set of linear boundary value problems, Le.. a set of partial differential equations (viz.. 
the classical small disturbance flow equation) and boundary conditions specified at the 
mean surfaces and lines. In section 3.3, solutions to  the boundary value problems are 
expressed in terms of integral eqLations. The flow incidence at the mean surfaces is given by 
integrals of kemc! functions which represent flow singularities (Le., sources, doublets, and 
vorticity) distributed on the mean sdrfaces and mean lines. A solution is constructed by 
finding the strengths of the flow singularities which produce the flow incidence satisfying 
the surface boundary conditions. Once this solution is constructed, the aerodynamic surface 
pressure is computed. This calculation leads to equations relating the surface pressure to the 
quantities which appear in the surface boundary conditions and which give rise to  surface 
flow incidence, e.g, angle of attack. These final expressions form the basis for computing 
the stability derivatives required for the FLEXSrAB system analysis. 

The FLEXSTAB system determines the strengths of the flow singularity distributions 
using spproxima*ions similar to those of reference 1-1. As shown by figure 3.1-5, the mean 
surfaces of thin bodies and the mean interference surfaces of slender bodies are suhdivided 
into small quadrilateral ptels, while the mean centerlines of slender bodies are subdivided 
into line segments. Siniple distributions of the flow singularities are assumed for the surface 
pxnels and centerline segmenk The strengths of these sim; I;. distribution; arc governed bv 
unspecified parameters, Si. The  flow singularity, e.g., an element of vorticity (ref. 2-3, c'q. 
5-34), at the point XI, Y 
which can be expressed as follows: 

Z1 on the panel induces a flow incidence at the point X.Y.2 

(3.1-1 ) 
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FIGURE 3- 1-5.-TYPICAL AERODYNAMIC PANELING SCHEME 

Integrating ihis expression mer the ith panel with vorticity distribution strength S: leads to 
the result 

where 

(3.1-2) 

v .  and si is the surface area of the panel. The aerodynamic influence, a i . ai the point 
X. Y. Z is the flow incidence there due to the vorticity Oil thc i th  surface panel. 

The flow singularity distributions used in the FLEYSTAB system itre summarized in 
table 3.1-1. Control points. equal in number to the number of unspcciticd parameters, Si, 
are chosen at the surfaces where the boundary conditims are spcified. The flow incidence 
*i(X. Y. Z) dtie to each of the panel and line segmeitt flow singularity distributions is - 
evaluated at the control points, thereby gentnting determinant sets of algebrdic equations 
of the form 

r 

F; = 1. d j i S i  . -  - 7 ::I 
A -  

( 3.1-3 ) 
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TAB1 E 3.1-1. --FLOW SINGULARITY DISTRISUTIONS 

(2.1-5) 

where rht dcrodyiixiiic influence coefficiznt tnatris is given by 

(3.1-7) 

(3.1-8) 

T k r  2xprtsGms represent ;1 soiutio;i to the aerodynamic problem solved in the FLEX- 
ST.-\B S > ' j t e m .  
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The complete method of solution to the aerodynamic problem is derived in section 
3.4. The problem is solved in steps following the approach outlined above. Sections 3.4.2 
and 3.4.4 contain derivations of the aerodynamic pressures induced by the .thickness shapes 
of slender bodies and thin bodies but with the thickness shapes treated as isolated bodies 
ignoring the effects of mutual interference. The steady lifting pressure for isdated slender 
and thin bodies are deriked in sections 3.4.3 and 3.4.5, and the solution to the steady 
aerodynamic induction problem is depved in detail in section 3.4.6. The effects of-steady 
interference from thickness and hft are computed using the solution to  the steady ae ro  
dynamic induction problem. This computation leads to the sdution to the combined steady 
aerodynamic problem in section 3.4.7, viz., the steady aerodynamic pressures due to  
thickness and the steady aerodynamic lifting pressures due to  camber and steady motions of 
the aircraft surfaces relative to  the freestream. 

The method for solving the low frguency unsteady aerodynamic problem is derived in 
sections 3.4.8 'ihrough 3.4.'. ! . The thickness shape of an aircraft is assumed to be steady, 
and the unsteady aerodynamics are related only to the lifting problem. The combined 
unsteady aerodynamic problem is treated in section 3.4.1 1, and the drivation leads to the 
fdlowing expression: 

(3.1-9) 

where the matrix [ bAk, 1 is an unsteady aerodynamic influen? coefficient matrix relathg 
the Sine raies of change of flow incidence at control points { * }to the aerodynamic 
pressure cotffcients at the vortex panel area centroids. These influence coefficients are 
indepndent of frequency (a unique and important characteristic of the low frequency 
approximatic n*); they contain the effects of timevarying vorticity in the aircraft's wake 
and the effects of finite speeds of propagation of flow disturbances-both to a first-order 
approximation. The frequency dependence appears only because the flow incidence 
appears as a tirst-order derivative with respect to time; for harmonic, unsteady motion, 
the complex pressure is given by 

wherc * denotes a complex quantity and 

(3.1-1 0)  

(3.1-1 1 )  

is a complex aerodynamic influence coct'ficient matrix. This matrix is seen to be a linear 
function of reduced frequency as a consequence of the harmonic variation of flow incidence. 

(3.1-1 2) 

The low frequency approximation is valid for arbitrary, slowly varying flow incidence; the 
complex relations are introduced here only to demonstrate the relationship of the low 

*See section 6. I .  
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frequency unsteady aerodynamic influence criefficients to  the complex aerodynamic 
influence coefficients encountered in solving finite frequency unsteady aerodynamic 
problems. 

Section 3.4.12 derives a leading edge correction which is necessary for the method of 
solution used in the FLEXSTAB system to  yield theoretically correct leading edge suction 
on thin lifting bodies. Section 3 is completed by sections 3.4.14,3.4.15, and 3.5 wherein 
c q ~ i r i c a l  data are introduced and the aerodynamic iorces acting on an aircraft are derived 
from the aerodynamic sur fxe  pressure distributions. 

3.2 DERIVATION OF THE LINEAR AERODYNAMIC THEORY 

3.2.1 Nonlinear Aerodynamic Theory 

The complete nonlinear aerodynamic theory consists of a flow equation in terms of an 
unknown velocity potential, boundary m~ditions, and a relation governing the pressure 
coefficient in terms of the unknown velocity potential. 

3.2.1.1 Flow equation-The flow equatioi. is given by equation (1-74) of ief- 
erence 2-3 as 

where a is the local speed of sound, viz., 

and 0 is the unsteady velocity potential from which thc flow velocity is computed as 

6 = 3 L  (3.2-3) 

In the analysis to follow the velocity potential is expressed as the sum of a 
freestream component and a perturbation component. Letting the freestream component be 
given by 

4m -= u x ,  (3.24)  

the perturbed velocity potential is expressed as 
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where 4 is a pcrturbation velocity potential normalized with respect to the freestream 
velocity. 

3.2.1.2 SttrJat.e botttt&r-v condition -The surfacu: boundary condition has picviously 
been developed as equation (2.3-33) and, in terms of the perturbation velocity potential, 
is txprt.ssr.J as follows: 

a 4  - 1-r - & - &  63 + - - - n t -(V + w XL-  + -) - n on G ( X , Y , Z , t )  = 0.(3.2-6) 
an x U R  6t 

3.2.1.3 IVuke boutt&ry conditiom -The wake boundary condition requires that the 
pressure be continuous across the wake surface, i.e., 

[C 1 = 0 on wake surface. 
P (3.2-7) 

3.2.1.4 Fur-field botiriQary condition- -The far-fidd boundary condition requires that 
perturbations to  the freesteam propagate outward away from the aircraft surface and that 
the disturbmm either vanish or  remain finite at inddinitely large distances from the 
surface. 

3.2.1.5 Presstire rclarioti.-Tht. pressure coefficient. 

is given in terms of the velocity potential by equation ( 1-64) cf reference 2-3 ;u 

(3 -2-8) 

(3.3-9) 

3.2 1.6 Stutemw of tlic aerodyrioniic problem.--Having the aerodynamic theory 
expressed as above. the aerodynamic problem may be stated as follows. Civcn the aero- 
dynamic shape (C(X.Y.Z.t) = 0). the surface velocity (U, 3,. w‘ and d a 6 t  ), and the wake 
location contained in the boundary conditions. find the perturbation velocity potential 
O(X.Y.Z.t) satisfying the boundary conditions and the flow equation. Tlic pcrturbatioi. 
velocity potential so determined rcprescnts a solution to the problem. The acrodyiiamic 
surfrice pressure is cgmputed by substituting tlic velocity potcntial into tti. pressure rclatiori 
3nd evaluating the resulting expression at the aerodynaniic surface. G( X.Y ,Z,t) = 0. 
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321.8 Speciul ncBtutic*:i : 4 t e d  to spatial coordiruttes. -The solution to  the boundary 
value problem posed by the aerodynamic theory, ix., the velocity potential, equation (3.2-5)' 
is derived in the fdowing for the instant of time t = to. This is the instant o f  time introduced 
in section 2.2.2 when the Fluid and Referenc Axis Systems are coincident as shown by 
figure 2.2-2. At this instant of time the spatial coordinates of a point in the Fluid Axis System 
are identical to the spatial coordinates of the same point in the Reference Axis System. In 
expressing the velocity potential in the following. the rdriables x. y. z, therefore, are freely 
interchanged with the variables X, Y. Z. Also, partial differentiation with respect to the 
variables x, y, z is freely replacecl by partial differentiation with respect to the variables X, 
Y. Z because time is held fix& in these operations and the equations are entirely in terns of 
Eulerian, Le., spatial, coordinates. 

To denote spatid variables of integration, several notational devices are used. Spatial 
variables of integration are sometimes denoted by 
superscript position or a subscripted one is used to indicate that a spatial variable is a 
variable of integration. Thus. the notation X', Y ', 2' in section 3 denotes Reference Axis 
System coordinates used as variables of integration. This notation should not be interpreted 
as indicating coordhates in the Inertial Axis System, which never appears in section 3. 

q. r- At other times a prime in the 

3.2.2 Asymptotic Expansion Method 

The linear aerodynamic theory is derived by identifying in the surface boundary 
condition, equation (3.2-6), small parameters governing the magnitude of the local flow 
incidence, and by seeking an asymptotic solution to the nonlinear problem valid in the limit 
as the small parameters approach zero, chapter 3 of reference 2-3. The perturbction velocity 
potential is expanded in an asymptotic series involving powers of the small parameters. This 
expansion is substituted into the nonlinear flow equation and boundary conditions of 
section 3.2.1. Equating t'fir'c equal in order of magnitude among the small parameters leads 
to a sequence of simplifie i. hiczr boundary value problems. These problems individually 
govern the flow associate I- i th each of the small Parameters. - 

3.2.2. I The asympto;ic :*cr.e.~. _ -  f i e  asymptotic series is chosen as 

where ei denotes any of the small parameters. The first-order potentials are found to be 
governed 3y linear partial differential equations of thc following form: 

and they are required to satisfy linear boundary conditions imposed at mean locations of 
the aircraft's surface and its wake. 

3.2.2.2 Low frequency upproximution. --A second asymptctic series is chosen assuming 
that the unsteadiness of the boundary conditions related to the unsteady potentials is slowly 
varying. The asymptotic expansion is taken to bc a complex power series in tcrms of the 
frequency of the unsteady surface motion, i.e., 
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where the quantity oi is the circular frequency of the ith perturbation potential appearing 
in the first asymptotic series, equation (3.2-10). The reduced frequency defined in terms of 
a unit reference length, - 

w .  5 Wi/U, 
1 

is the small parameter in the second asymptotic series, and an asymptotic solution valid in 
the limit as Gi approaches zero is sought for the unsteady flow problems. The zeroth and 
first-order potentials contained in this series are found to be governed by steady flow 
equations and boundary conditions. The flow equations and wake boundary conditions 
governing the first-order potentials, however, are found to be inhomogeneous and require 
the first-order potentials to  be related to the surface boundary conditions in a somewhat 
complicated manner; nevertheless, the first-order potentials are shown to be functions of 
solutions to steady flow type problems in the general manner shown by section 4.5 of 
reference 3-1. 

3.2.3 Wing-Body Problem 

The linear aerodynamic theory used in the FLEXSTAB system is derived from an 
analysis of a simple configmation consisting of the wing-body combination shown by figure 
3.2-1. Although the FLEXSTAB system is applicable to  a configurdtion consisting of an 

FIGURF 3.2- 1.-WING-BOD Y PROBLEM 

arbitrarily arranged asscriibly of wing%, oodics. n;icellcs, and tails. the :icroclyn;imic tlicory is 
readily developed arouiid a siniple wing-body combination using tlw surface boundary 
condition in the compict form dcvcloped in  section 2.3.3.3. viz., 
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- ( x , Y , z , + )  a 4  = -nX(X,Y,~,t) + O h V ( t ) ’ J ( ~ , y , Z ) n  an Y 
(2.3-73) 

t Qiw(t)W(X,Y,Z)nz on G ( X , Y , Z , t )  = 0 .  

The aerodynamic problem posed by the wing-body combination with the surtice boundary 
condition given by quation (2.3-73) is referred to hereafter as the Wing-Body Problem. 

The geometry of thc Wing-Body Problem is described analytically relative to mea11 
locations of the wing and body as shown by figure 3.2-2. Thc wing, classiticd as a thin body, 
is described relative to a planar mcan surface, while the body, classified as a slender body, is 
described relative to a mean centerline and a mean cylindrical surface. 

The aerodyn:!mic theory developed around the geometry of the Wing-Body Probieni is 
rciadily extended by the principle of superposition to the arbitrary configuritions dcalt with 
by the FLEXST.QB system. As noted in section 3.2.2, thc linear theory is dcrived by 
identifying in the surface boundary condition, equation ( 2.3-73 1, small paramctcrs 
governing the magnitude of the locd flow incidence at the surface. These parameters are 
related, in part, to the surface geometry. Again, as noted in the introduction to the 
aerodynamic theory, section 3.1. the geometry of an arbitrary configuration in the 
FLEXSTAB system is represented as an assembly of thin and slender bodies, each of which 
is contained in the Wing-Body Problem. The surface boundary condition of the Wing-Body 
Problem therefore contains all parameters contained in multiple thin body-slender body 

rMean surface 
Slender body 
actual surface 
Slender body 

NGUR E 3.2.2.- WING-BOD Y COMPOiVEN T A R RA NG EMEN T 

configurations. Since the theory being derived is linear, additional potentials E , Q ~  associated 
with additional configuration components may be added to the tlicory by thc principle of 
superposition. The equations governing the additional potentials will bc identical i n  form to 
equations contained in the Wing-Body Problem. 



3.2.4 Analytical Geometry of Wing-Body Problem 

-1.24. I Acroc1i:riumic locul usis svsterns. -The geometries of thin and slender bodies arc 
described aiialytically in ternis of local axis systems XN, YN. ZN -one for each body -with 
l'v subscript N indicating that the IOCJI axis system is used in the geometric description of 
the Nth  body. The origin of the Nth local axis system is located by the coordinates XN(O), 
YN(O), ZN(O) in the Refereiicc Axis System. The XN axis is always prrrillcl to thc X axis of 
the Pcfcreccr Axis System, while the YN and ZN axe'* are oriented with respect to  the 
Reference Axis System bv a positive rotation ON ahout the XN axis, figure 3.2-3. The 
transformation from the ketkronce Axis System to the local axis systcm of thc Nth body 
therrlfore is given by 

XbJ = x - X,tO) 

3.2.4.2 Analyticul geometry of thin bodies.-The geometry of a thin body is described 
in terms of a local axis system (XN,YN,ZN) whose XNYN plane coincides with the mean 
surface of the thin body, figure 3.2-4. Tlie surface of the body is expressed as 

- 
- * (3.2-1 2) 

-7 

FIGURE 3.2-3.4ERODYNAMIC LOCAL AXIS SYSTEM 

Coordinate normal to the mean 
wing surface 

Actual surface 

7 

hlean csmber surface 

FIGURE 3.2-4.-THIN BODY SECTION GEOMETRY 

3- I 3 



where F(XN,YN) is an antisymmetric function describing the thickness shape and H(XN,YN) 
is a symmetric function describing the camber shape includhg clastic deformation and 
control surface deflection. 

The orders of magnitude assumed for quantities appearing in equation (3.2-12) are as 
follows: 

(3.2-1 3) 

where 5 is the reference length, e.g., the mean wing chord. The unit vector ncrmal to the 
surface is found by applying the formula given by equatior. 2 3 - 3 2 ) :  

- C-(-rF+SH)sinBN a +  - coseN: -t 1: 1 (3.2-14) 
a yN 

where the upper (lower) sign implies evaluation at the upper (lower) surface. 

3.2.4.3 Analytical geometry of slender bodies. -The geometry of a slender body is 
described in terms of a local axis system (XM,YM,ZM) whose XM axis coincides with the 
mean centerline of the body, figure 3.2-5. The cross section of the actual body shapc is 
replaceu by one which is circular, with the center of the circular section displaced from the 
mean centerline by the camber shapes: 

YM = b(t)G(XM) 

and 

where 

(3.2-1 5 )  

ZM = C(t)I(XM) 

and (3.2-16) 
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Mean 

ilGURE 3.2-5.-SLEtWER BODY CROSS-SECTIGN GEOMETRY 

For the theore&iml development of this section, the slender body is infinitely long with 
cross sectian 

( 3.2-1 7) 

where P is a constant, 

R(XM) = O ( L )  

and (3.2-18) - 
a<<c. 

The effects of slender body truncation in the form of a pointed nose and tail are added in 3 
manner similar to that described by reference 1 - 1 .  wherein the effects of slender body 
trun-ation are patched intg the results of the present analysis. 

The surface of the slender body is expressed as 

f 3.2-1 9)  

and the unit vector normal to the surtacc is found ;is 
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+ + -P 
aG 31 + dR + b-osp + c---sinpl i cospj + s h p  k) n = (-[a- 

dxM ax, ax, (3.2-20) 
dR + b -  aG cosp + c- 31 siq: 2 +-*.]. x { i - +  - 
“U ax, ax, 

3.2.5 Asymptotic Expansion of the Wing-Body Problem 

When the geometric parameters a, b, c, 8 and T are allowed to vanish, the configuration 
b;ls the limiting shape shown by frgure 3.26, Le., it reduces to mean surfaces which are 

Z 

i Y 

FlGURE 3.2 -. -LIMITING FORM OF CONFIGURA JlON 

uncambered and digned with the X-axis. Letting thc time-dependent geometrk parameters 
be expressed as A 

b ( t )  bXb<t), 
A 

c ( t )  = clc(t), 

and (3.2-3, I ) 
A 

O(t) = QX,(r). 

where hb(t), h,(t) and A&t) and their deiivatives have the order of magnitude ilnity, the 
parametes which give riss to disturbances to the frleestream are as follows: 

A A  6 A . +  

W , V , T  ,e ,d,c ,b (3.2-22) 
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When these parameters are all set to zero. the conrtguniion reducrs to the iimiting 
configuration. and flow incidenr? a1 the sufiatx vanishes everywhere. 

325.1 -~*mprr>tic. smic~-ll ic velocity ptcnthl .  equation (3.2-5). is ;I pnmctr ic  
function of the perturbation panmeters listed by cquation (3.1-22). and its asymptotic 
expansion is chosen :o be the following: 

A #. * A 

+(second and higher or?.nr terms)]. 

Thii rxpmsion is substituted into the flow equation arid the boundary conditions. 

R.?.5-.? Epnsioti of the flow eguafion. -S2bstituting the velocity potential given by 
equation (3-2-3) into the exact !low equation, equations (3.2-1 1 and (3.2-2), and collecti.ig 
like-ordered terms in .mwers of the small panmeters, !e.i~ds to the following: 

r’ 2 2H2 M2 + = r e  0 7 X X + 4 7  +$,,,--- - -  0 7 x c - @ 7 t r ] +  y y  u- v 

f 3.2-24) 

By dr.fi,iitim, tlic small parameters of the problcm are indcpcridciit of one ariotlt:r 
(e.3.. the magnitude of 
ot the terms in brackets of equation (3.2-24) thcreforc must vaiiisli scpxritcly. Tlius. for thc 
csact nonlinerrr flow equation (3.2-1 ) t o  be wtisficcl by tlrc velocity potcriti;il. q u a t i o n  

ib ntit rdakd  tu tlic magnitudes ol‘ the othcr psrarwtcrs). E ; d i  
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(3.9--23), the disturbance potentials 41 through + must satisfy at least the following linear, 
partial differential equations: 

2P2 M' - 2  

w: s (Olxx+91yy+9'zz-~lx.i:-~ltt = 0 

2 

2 
a: 8 (O5,,+4~~~+9~~~ = o  

(3 2-25) 

There are, of course, additional partial differential equations contained in ille higher crdered 
terms of equation (3.2-24). These equations are ignorrd i.1 the present analysis and are, iii 
general. not satisfied by the solution to  the aeroctynsmic problem contained in the 
FLEXnAB system: only the first-order flow cquations, equations (3.325). are considered. 
Thr F L E X n A B  system is therefore Lased on a first-order approximation which is Enear as 
3 :onsequence of the linearity of equatio,a (3.2-25). 

j.J.5.3 Expiision of tlir tltiti body siirface boiiridary c*onditiori. -To express the 
surface boundary condition in terms of small parameters for the thin body (viz., 4, *v, r, 
and 8) the expanded potential, equation (3.3-23). is substituted into equation (2.3-70) and 
cualur4ted at thc wing surfacc. Noting that for spatial differentiation the variables, X,Y,Z 
and x,y.z, are interchangeable. tires! operations lcad to the following form for the boundary 
condition : 
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(3.2-26) 

+ aF + aH 
N 

+ ( -cos 8 N - ~  zLrs in0 N- 8 X e in6  ,- 1% 1 

A n n 

The values of the potentials at the actual wing surface can be expressed in terms of a 
Taylor series expansion about the mean wing surface (fig. 3-24). TaLing a typical 
expansion, that for #ly, the value of $ at the actual wing :urface is given by 1Y 

where :I is a normal coordinate positive upward from the mean wing surface, figure (3.2-4). 
The plus and minus signs denote upper and lower surface. respectively. 

Inserting expansions like that of equation (3.2-27) into equation (3.2-26) and equating 
orders of magnitujes gives the boundary conditions to be satisfied on the m a n  surface of 
the wing. For the various parameters the t-mt-order boundary conditions arc as follows: 



h 

W: 

A 

V: 

f: 

A 

e :  

a: 

A 

b: 

A 

c: 

(a) 

(b) 

(3.2-28) 

(e )  

(f) 

where the normal derivative a/an is now along the normal to the mean surface: 

- -  a - a  - cos e N  - - a s i n e N  
an az aY 

32.5.4 Expansion of the wake boiinckrry condition. -The wake boundary condition 
requires that the pressure coefficient be continitom across the wake surface. Recalling the 
pressure coefkient, equation (3.2-9). and introducing the expanded potential, it follows 
that 

& + ; , %  + c D07 - +.. .I  
ax Dt Dt 

(3.2-29) 

where D/Dt = a/at + U a/ax. It remains to evaluate the pressure coefficient on the actual 
wake surface by expanding the potentials in equation (3.2-29) in terms of a Taylor wries 
expansion about a suitable defining surface whose position is known a priori. 
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As noted in the &usdon on kinematics, the mean wake surface may be located 
mlative to the paths of the trailing edges of i i r t i  surfaces of a configuration. Consider the 
cylindrial surface which is a downstream continuation of the mean wing surfax and which 
is parallel with the X-ioth, fwwe 3.2-7. This surface is termed the defining &ace. The 
coordinates of points on the mean surfdce relative to correspiding points on the defdng 

FIGURE 3.2-7.-WAKE SURFACE 

surface, AX, AZp, AYp, are found by integrating the unsteady velocities U$X,(t) and 
Uh,,(t) to find the following: 

A 

=CwC-Xw(t) + Xw(t-x/U)1 

A 

=uv C-Kv(t) + Xv(t-x/U)! 

where XJt) = axw/at and A$) = axv,Qt. The mean wake surface is displaced in the 
Xdirection as 

AX = (c-U)(t-t) 

(3.2-30) 

(3.2-3 1 ) 
t 

where = U/X/ U( r)4r is the ave~.igc forward velocity. 
t-U!X 
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The actual wake surface is deformed about the mean wake surface. The displacement 
of a point on the actual wake surface from the corresponding point on the mean wake 
surface is denoted 3s AY, AZ. The distances AY and A2 are functions 9 the small 
paraweten and may be expressed as 

A A n A A 

AY = UAY1 + VAYZ + T A Y ~  + BAY, + aAY5 + bdY6 + cAY7 + 

+ (se~und and higher order terms) 
n A n A A (3 -2-32) 

A2 = r1AZl + vAZ2 + T A Z ~  + 9AZb + ab25 + cAZ6 + bAZt + 

+ (second and higher order terms) 

A second Taylor series expansion in terms of the spatial displacements AY,AZ is requid  to 
e x p a  the value of the pressure coefficient on the mcan wake surface in terms of its value 
on the defining wake surfa~x. 

Assuming AX to be small, the sequence of Taylor series expansions gives rise to second 
and hi@ .c order terms in the expansion of the pressure coefficient. Thus, the pressure 
coefi.knt on the defining surface is a fmt-order approximation to the pressure coefficient 
at corresponding points of the actual wke SurfaLx. Imposing the requirement that the 
pres  ire coeffkient be continuous across the actual wake surface to  ail orders of magnitude, 
Le., (Cp I= 0, results in the following b n d a r y  conditions to be applied on the defining 
surface of the wake: 

* 
G.: @ I  = 0 (a) 

a: tg'O = u 

A 

c :  c 2 7 p  = 0 

( e )  

( 3.2-33) 

where il denotes the discontinuity across thr defining surface. 
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3.253 Ekpnsion of the s W e r  body swfbn lwmdwy condition.-Substituting the 
expression for the unit vector normal to the surface of the sknder body, equation (3.2-20). 
intu the surfrce boundary condition, equation (2.3-70), and evaluating at the surface of the 
body leads to the fdowing expression: 

A A A A 

+ cosv(-vAvV+w$l + ~9~~ + + e + s y +  
(3.2-34) Y 

A A A A 

+ W0lz + v92 2 + 143, + e0s  2 + ads2 + b$6 2 

A 

+ c4,  + .e. ) = 0. 
2 

The nondimensional perturbation velocity potentials are evaluated at a typical surface point A 
and this value can be expressed in terms of a Taylor series expmsion about the correspanding 
point A'on the mean surface (fig. 3.2-8). 

FIGURE 3.2-8.-CORRESPONDING POINTS ON THE ACTUAL 
AND MEAN SURFACES OF A SLENDER BODY 

The nondiniensional perturbation velocity potential at point A is thcrefore given by the 
expansion about point A' as follows: 
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(3.2-35) 

Substituting equation (3.2-35) into equation (3.2-34) and equating terms of like order in the 
small parameters leads to the following system of fust-order boundary conditions to be 
satisfied on the mean surface: 

A 

v: 3 2  an = - X,(t)V(X,Y,Z) cos p 

(3 -2-36) 

These are the first-order boundmy conditions to be satisfied on the mean surface of thc 
slender body, and n is the outwrd normal to the mean surface such that the normal 
derivatives appearing in equation (3.2-36) have the following form: 

13.2-37) 
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3.2.5.6 Linear First-Order Aerodynamic Theory for the WingBody Problem 

The fmt-order aerodynamic theory for the case when thc time-varying quantities 
A,,,(t),kv(t), A#, Ab(t), and AJt) are of order unity is now completely formulated. The 
solution is given by the perturbation potential 

h n * h h 

(3.2-38) $ =W@I + V@z + T @ s . +  e4h + + b@6 + C 9 7  

and is a fmt-order approximation to the nonlinear theory stated in section 3.2. I .  The 
velocity potentials Oi (i = 1,2,4,6,7) must satisfy the linear unsteady flow quation 

iyy + 9 i z z  - U i x t  - M2, u itt = o  (3.2-39) 
2 M2 + Q  2 

@ixx 

while the velocity potentials #i (i = 3 , s )  mmt satisfy the l ine1  steady flow equation 

(3.240) 

Letting SW and Sg denote, respectively, the mean surfaces of the thin wing end slender 
body of the WingBody Problem and letting the flow incidence from each potential be 
denoted as 

the surface and wke b o u n m  conditions are summarized as follows: 
* CI 

w :  y 1  =-wXw(t) COS eN W o n  Sw 

on SB 
r. 

=-wXw(t) s i n  p Gi 

f r l =  D@ 1 0 on GI 
n 

v :  

T :  

A 

8 :  

A 

y P  = v~"(t) s i n  eN B on Sw 
I* 

= - vXv(t) cosp v on SB 

= o  

- 3F Y ?  = + T- 
a *N 

= o  

= o  

= 0 

or. w 

03 sw 

on S B  

on sw 

on W 

on S g  

OR w 

(3.241) 

(a> 

(3.242) 
(b) 

(C) 

( d  1 
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a :  \ys = 0 on Sw 

A 

b :  

.-. 
c :  

dR = - a- 
dXM 

on SB 

on Sw Y 7  = 0 
n 

= - C X  sin p on SB 

on W 

The entire aerodynamic theory for the Wing-Body Problem is expressed in the 
following compact form: 

flow equations, 

surface boundary cmditions, 

a @ i  
E - = - Y i ( X , Y , Z , t )  on Sw + SB i an 

A h h A A 
where €1 = w, €2 = v, e3 = r,  e4 = 9, 5 = a, e6 = b, el = c 

(3.2-43) 

and wake boundary conditions, 

[ Q ~ ~  + uaixn = o on w 
where Oi is given by equstions (3.2-42) and all derivatives with respect to !.. ;?le: . wnish fur 
the thickness problems i =3 and 5. 

3.2.6 Low Frequency Approximation 

The unsteady flow problems posed by equations (3 .243)  arc greatly simplified by thc 
low frequency approximation previously refcrred to in section 3.2.2. Equations (3.2-43) 
yield a valid approximation when the unsteady flow ii:rdrnce imposed by thc surface 
boundary conditions has the characteristics 



and (3.244) 

If the unsteadiness is simple harmonic, Le., if 

{Yi!X,Y,Z, t )  = R{Ui * (X,Y,Z,zi)e i w j .  t 9 

then equiitions (3.2-44) imply that the reduced frequency, 

may be of order unity. In this section 

w - - i  wi = 

( 3 . 2 4 )  

(3.246) 

(3.247) 

is taken to be a small parameter, and an asymptotic solution to the unsteady flow problems, 
equations (3.243), valid in the limit as Wi approaches zero, is sought. 

3.2.6. I Simple harmonic time depetidence. -Assuming simple harmonic time depen- 
dence as in equation (3.245), the unsteady flow problems become as follows: 

where $,* is t t  cornpiex potcntial such that 

(3  .?-49) 

3.2 6.2 Asytttptotic serics irr f i cq i imcj~ .  -The reduced frequency is identified as ;I smdl 
parameter in the surface bounclary condition by noting that the local, complcx flow 
incidence can bc expanded in a complex powcr scrics as follows: 

(3.2-50) 

+ (terms of h i g h e r  o r d e r  in i 5 , )  
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Corresponding to this expansion, the asymptotic expansion is chosen as follows: 

Substituting the expansions, equations (3.2-50) and (3.2-51 ), into the equations governing 
unsteady flow, Le., equations (3.2-48), and equating terms of like order in iGi, leads to the 
following sequence of simplified flow problems governing the zeiuth and first-order 
potentials: 

zeroth order 

(0 1 ( 0 )  = 0 
flow equations, 

2 (0) 
Q i x x  ' Q i y y  ' Qizz 

and boundary conditions, 

first order 
flow equations, 

and boundary conditions, 

(3.2-52) 

(3.2-53) 

3.2.6.3 Firrt-order approximation to unsteady flow.-The first -order approximatim 1'. 
unsteady flow is obtained by truncating the asymptotic series as follows: 

( 3.2-54) 

This expression yields a valid approximation when the frzquency of the local flow irddcncc 
is so small that terms oi higher order in iiSi may be neglected by copparison with the zeroth 
and first-order terms. A direct evaluation G f  the required smallness of the reduced frequewy 
for equation (3.2-54) to yield a valid approximation is deferred to section 3.2.8, but some 
insight into the nature of the approximation is gained from an examination of the first-order 
problems poszd by equations (3.2-53) 

An intcresting physical interpretation of the first-order problems stems from &he wakc 
boundary conditions. The implication of this boundary condition fol;ows by 
[#/*lis independent of the X-coordinate, Le., the distance downstrcani, 
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on W in the zeroth-order problem. It may also oe roted that Ut$i(')R on W is equa! to the 
strength of the bound vorticity on the surface producing the vortex wake. (See equation 
(7-38) of reference 2-3.) Recalling that 

it foliows that :o first order in i u i  

and the termsu@i(o)] appearing in the wake boun.lary con1tit;ons of the first-order problems 
represent the rate ot c':..pige of bound vorticity in the zerot*'-order problems. From the 
fmt-order wake boundary conditions, i.e., 

it follows that there must be a transverse component of vorticity in the wake whose strength 
is %dependent of the X-coordinate and is eqaal to t?ie time rate of change of bound 
vorticity. In terms of time history the wake has a '-n)erliory" limited to the instantaneous 
flow incidence and time rate of change of flow incidence OR the surface. The wake extends 
to infinity with a transverse component d vorticity which depends only on the time rate of 
change of surface flow incidence at the instant of time under co&deration; thw, the wake 
vorticity strength varies linearly in the Xdire c t' ion. 

For flows with a supersonic freestream the cffect of the liniited memwy of the wake is 
not severr sine only a small portion of the wake close to a configuration can influeice the 
flow over the configuration. For subsonic flows, hciilever, the situation is quite different 
because the entire wake influences the flow about the configuiation. The influence of 
distant psrtions of the wake is greatest for very large aspect ratios, decreasing with 
decreasing aspect ratio to the slender body theory limit wherein the Hake has no fi.st-order 
influence. The validity of the asymptotic expansion :or low frequency motkms must depcnd 
in some way on the aspect ratio. The question is considered further in section 3.2.8. 

3.2.6.4 Derivarioli of the form of'rhe solidoti to the first order prt2lcms.-The zero th  
and first-order problems posed by equations (3.2-52) and (3.2-53) must be solvcd seqwn-  
tially because the first-order equations contain inhomogc1,eous tel ms v hid1 are functions of 
the solutions to the zeroth-ordei problenis. The 7eroth-or&- proNcms r- w n  to bc simp/y 
the steady flow probl*ms obtained b assuming the iocal flow incidcnce e surfucc to bc 

equation is seen to bc identical to the steady flow equation. Therefore, on let:ins intcgrals 
of this quation be denoted ,IS 4 ~ .  the solutions to the zeroth and first-crder problcms arc 
denoted 3s follows: 

steady with the solution given by ( ~ j  (6) . The homogencour, for!), of the first-urdcr flow 



and 

A particular integral to  the inhomr- -rlzous flow eqw’ion of the k t d r  problem is 
given by equation (4.5. I b) of refenme 3 I as fdlou?;: 

3hb particular intqr;al, when combed  with the horn-- solution and substituted 
inta the bomdxy conditions of the f i ~ s ~ d ~  Foblem, k d s  to 

( 0 ) )  
i . . , j T , : ;  -P a% ;-(x,y,z; -??I + n2 -2.“- 

9fr 1 B c1. 

and (3-2-58) 

~ 

= -C$3:x,y,z; - Y .  !o i 11 on W 
1 

In the firs: of equatiolrs (3.2-58), the fiat  term cancels the term on the right, leaving 
the un-derlined term. The first tern; 11 th, second of equation (3.358) vanishes because of 
the csurned f9rm of q b ~  which was used in the zerothader  poblem. The second terr 
cancels t’le t e m  on the @+hand side, leavirrg the underiined terms. Thus, to the -?rticular 
integn1 given by equatloii (5.2-57) must be aalded additional homogzaeous terms which 
cilcel the underlined ternis appcaring in equations (3.2-58). 

- Thr additional homogeneous term which will satisfy the surface boundary cmditioas is 
&en by refereaw 3-1 and the f st-orde: solution given by reference 3-1 is as follows: 

-’ c 
first  hcmoger.?ous tern p a r t i c u l a r  i n t e g r a l  

(3.2-59) 

‘- A 
;ecor,3 homoq- eous term 

3-30 



'Ihe first homwneous term provides the solution satisfying the fmt-order si1 tce boundtry 
condition. The second -71nce.pb the flow incidencv induced by the particular integral. 
Equation (3.2-59) cwrresponds to  the w u l t  presented as equation (4.5. I b) of refereye 3-1 : 
and, as pointed out in reference 3-1. this is a complete solution in the case OF apersonic flow 
about a wing having no subsonic t d i n g  edges, i.e.. when thc wake borritdary condition is 
climimtd from the pmblem, Equation (3.2-59) is not a solution 51 subsonic t b w  nor in the 
g n e d  case cf supersonic flaw becruse it fails to satisfy the wake boundary conditions of 
the tirst order problems. 

A cwmplete solution t o  the fintordcr proh!erns satisfying born the surface and the 
wake boundary conditions for arbitrary configuration shapes in subsonic and supersonic 
flow is derived in the following. This derivation prow -ds from a formulation of the 
vrsteady flow problems expressed in terms of the acceleration potential defmed as 

which. to fmt  order. is given by the linear approximation 

Q = et + UQ, (3.2-60) 

In terms of the acceleration potential the unsteady flow probi-ms are shown by reference 

baundary conditions; 

B2 = 1-H2 

R i  = i I i ( X , Y , Z , t )  

and 

(3.2-6 I ) 

B on Sy + S 

on W 

where Ri is required to stisfy the integral equation 

The proLrrn for:nihtion c!visisting of cqilrttions (:.2.60) through ( 3 . 2 4 2 1  has bcm 
introdutd tq obtdin a wake boundLry condition which is frw of first-ordcr time 
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derivatives-the source of the inhomoge:.eous term appearing in the wake boundary 
condition of equations (3.2-53). The firstorder time derivative in the flow equation is 
eliminated by introducing the following transformation of coordinates: 

1 x* = EX 

M t’ = -x + B t  8U (3.2-63) 

! r i (xc ,y , z , t ’ )  = Ri(’,y,z,t) 

so that equations (32-6:; become 

= o  MZ 
i yY + Q’izz -F R’ it’t’ Q‘ix’x’ + Q’ 

on S.‘ + Si (3.2-64) 
R a i  = Q ’ i ( X ; Y , Z , t ’ )  d 

In’il = 0 on W’ 

Assuming simple harmonic time dependence. i.e.. assuming 

i w j t  fii = e , 
(3.265 ) 

iOiX i3ix iG-x 
and multiplying by e so that d(e $*) = e ’ dx, it follows on integration that 

(3 .245)  

Under the transformation of coorpinates, equation (3.2-63). the potential and complex flow 
incidence become as follows: 

and 

where 

(3.2 67) 

( 3. ’-68) 
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is a ~!iodified potential wmpondmg to that given by equation (2.7.7) of reference 3-1. In 
thz> . terms equations (3.2-64) become 

a,* -.* i - i ( Y , Y , Z )  an Sw + SB 

4 fa-$ = 0 on W 

(3.2-69) 

a1 I on retwning to  the original mordir atej, Le., by substituting X'= X/B. the uns-lady 
fl I problcni becoma as follows: 

f l c  -.v equatior!, 

(3.2-70) 

z 
boundary conditions, 

fi: 1. = i i q t X , Y , , ,  .>n Sw + SB 

where ?ii*(X,Y,Z) is required to satisfy 

(3.2-7 1 ) 

on Sw + Sg. 

This unsteady flow problem, equations (3.2-70). is physical!) identical to that posed by 
equations (3.248) and yields an identical solution in terms of the complex velocity potential 
given by the foliowing: 

w t m  the intr'gancl of quation (3.2-71 ) is transformed using equation (3.2481, i.c.. 

(3.2-72) 
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Thus. if the complex flow incidence appearing in equation (3.2-7 I ) is identical to  that 
appearing in equations (3.248). the twc problems yield identical complex velocity 
potentials. 

An asymptotic solution to the unsteady flow problem, equations (3.2-70) and (3.2-7 I ), 
is xsiioit.d as follows wlicn tlic. complex flow iiicidency is e x p ~ s s c d  in the asymptotic 
scrics shown hy cqution (3.2-50): 

= + I +  i ; - p  + (terms of higher order  
-* 

L 

in io.) (3.2-34) 
'i i i  

1 

Substituting equations (3.2-50) and (3.2-7-1) into equations (32-70). and equating terms of 
like order in iG,. leads to the following sequent- af simplified flow problcas: 

mot11 o r J r  

flow equations, 

rind b0uiid;lry conditions. 

first order: 

flow equations. 

and boundary conhtions, 

(3.2-75) 

(3.2-76) 

on Sw + S- 

on G! 

fi 

Both the zeroth and first-order problems arc of thc steady flow typc and the surface 
boundary conditions are related io the complex flow incidelice by expanding equation 
(3.2-5 I ) ,  i.e., 
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Equating terms cf like d e r  in iGi yields the following: 

(3.2-78) 

Recalling equation (3.2-60), the complex velocity ana acceleration potentials are related as 

where &* is the modified complex velocity potential 

(3.2-79) 

( 3.2-80) 

Substituting the asyn?ptotic series into equation (3.2-79). and equating terms of like order in 
iGi. leads to 

- ( 0 )  - ( C )  

fl i  = U$liX 

(3.2-81) 

Substituting these results into cquations (3.2-78) and carrying out the indicated integrations. 
leads to the following: 

:3  2-82) 
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Applying the procedures leading from equation (3.2-71) to equation (3.2-82) to the 
expression for the complex velocity potential, Le., 

leads to  

( 0 )  - ( 0 )  'i = 'i 

and 

Equations (3.2-82) through (3.2-85) are now combin-d to find 

(3.2-83) 

(3 2-84) 

(3.2-85) 

(3.2-86) 

Equations (3.2-81 ). (?.2-84), and (3.2-86) show that the zeroth-order problem in terms of the 
acceleration potential stated by equations (3.2--5) and the first of equations (3.2-78) is 
identical to the original zeroth-order problem in terms of the velocity potential. equation 
(3.2-52). Equation (3.2-88 ields the desired solution to the fint-order problem given by 
equation (3.2-53) when 8i(ly is a solution to the homogeneous form of the flow problem 
with the surfacc boundary conditions given by equation (3.2-87). 

12.6.5 Sohitiori to the fwst order it1 frequency problem.- Recalling the symbolic 
notdtioi, introduced by equation (3.2-55), the solution to the first-order problem, equation 
(3.2-88). is expressed as follows: 

p a r t i c u l a r  i n t e g r a l  second homcgeneocs term 
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v -~ 
first hcmogeneous term 

(3.2-89, 

# v 

t h i r d  homogeneous term 

Differentiating with mpect to the norma! to the mean surfaces and evaluating at the mean 
surtace leads directly to 

on Sw + SB 

Thus, the solution sa:isfies the surface boundary conditions of the first-order problems posed 
I- v equations (3.2-53). The third homogneous term, which appears in equation (3.2-89) but 
not in the solution gven previously by equatim (3.2-59), satisfies the Lxt-order wake 
boundary condition. 

The complete solritions we obtained by combining the zeroth and first-order solu- 
tions. viz., 

3.2.6.6 .4rhItrurr, sloiv1ji wrj3i .c .  tittic dcpcnticrlc*c.. TI.: srrnplc hurmonic r t iof ion 
restriction is reniovcd, page 36 of rcfcrcnc~ 3-1. hy noting tiiat tllc conlplc:. pou.:.r scrics 
expansion of the flow incidence, equation (3.2-501, is equivalent to a T J ~  lor serics cxpansioii 
of I'ie timc-depcndent flow incidcnce itbout the prcscnt instant of timc. Then to first order 
in frequency 
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and 

y i  a? = y f 0 '  + i i i iyi  ( l )  

Substituting these approximations into equation (3.2-90) leads to  the followicg form for 
the solution: 

The pressure coefficient Cp induced by tile flow incidence is the end result required by 
the FLEXSTAB system and is found for harmonic niotion as 

.- 
3: - A 1G.t c P i  = - 2 E i ( q i x  + iui$.) . I  e 1 

while for arbitrary, slowly varying time dependence 

(3.2-92 I 

3.2.7 Sumniary of the Linear Wing-Body Problem 

The linearized Wing-Body Probicm is solved by solving a system 3f linear bomdary value 
problems all of the same form. In each boundary valuc problem of thc system the unknown is 
;I tunction, 

which is required to satisfy the following equations: the liiiear partial differential equation 
gwen by 
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the followbe mean surface aF.d wake boundary conditions: 

and the far field boundary condition requiring that b~ vanish or be finite on a surface X at a 
large distance from the aircraft. The system of boundary value problems is generated by 
changing the value of flow incidence distribution, $H, specified oii the mean surfaces Sw + SB 
The change is made by setting @H equal to each one of the following flow incidence 
distributions: 

Y i ,  Bi /U,  x + p  

and 

wherein 

A 

= - v V ( X , Y , Z ) X v ( t ) c o s ~  

= o  

ar i  Y o  = -0Xo(t)-- ( Y , Y , Z )  
a xN 

A 

= o  

Y5 = 0 

dR = - a - ( X , Y , Z )  
"'M 

on Sw 

on SB 

on Sw 

(b) 

..3.2-42) 

( C )  
O i l  SB 
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Once the solutions to the system of boundary value problems are constructed the solutioi! to 
the Wing-Body Problem is given by 

A e. 

4(x,y,z,t) = w $ 1  i- v42 + T43 

n ,. n (3.2-38) 
+ + a$5 + t*,; + 33, 

where 

(3.2-91) 
J - O D  

for i = 1. 2,4,6,7 and 

fori = 3, 5 

Having the solution give11 by equation (3.7-9 I )$ the induced aerodynamic pressure I s  t‘ounJ bl .  
substituting the potentials given by equations (3.2-91 ) into equation (3.2-93 1. \ i z . .  

CPi= - 2 6 . ( + i t  1 + $Iix). 

1 5 -  
3.2-93 
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By examining this summary of the linear theory developed m u n d  the Wing-Body 
Problem it is readily seen that the theory may be extended to the aerodynamic problem posed 
by an arbitmy configuration idealized as an assembly of any number of thin and slender 
bodies. Additional configuration components merely introduce addi?.onal mean surface 
Foundary conditions of the same form as those repre. ented by equations (3.242). These 
additimal boundarj conditions pose additional bolindary value problems which must be 
solved, and the solutions to these additional boundary value problems are simply added to 
equation (3.2-38). 

3.2.8 Restrictions on the Validity of t t e  Low Frequency Approximation 

The lo N frequency approximation is derivtd ill section 3.2.6 as an asymptotic series, 
equation (3.2-51), in wbjch the small parrmeter is the reduced frequency of the unsteady flow 
based on a characteristic length of unity, eqat ion ( 3 . 2 4 ) .  For the approximation to be 
valid. the terms of order higher than the zeroth and first-order terms in the asymptotic series 
must be negligible. A fundamenkl restriction on the unsteadLiess of the surface flow 
incidence stems from the expansion of the surface boundary Conditions, equation (3.2-50). 
This expansion is a complex power series, and terms of order Oi2 and higher are neglected in 
the low frequency approximation; thus, introducing the reference length c, used in scaling the 
small panmeters listed bv equation (3.2-21). the fundamental restriction is given by 

(3.2-95) 

From the discussion of section 3.2.6.3, however, it is readily apparenl that there are additional 
restrictions on the prmissible magnitude of the unsteadiness of the rlow hiposed by the 
boundarj conditions. The additional restrictions have been only partially derived, 3rd the 
objective of this section is to present those which have been derived and to describe an 
approach taken to obtain a complete derivation. 

The required smallness of the reduced frequency tor validity of the low frequency 
approximation can be determhed only by investigating the effects of the higher ?:der terns 
neglected in the approximation. As noted in section 3.2.6.3, the validity of the ippro. 
is expected to depend on the aspect ratio of a ccnfiguration; but, in addition. references 3-3 
and 3-4 show that the validity is limited by Mach number as follows: 

,dim 

and 

(3.2-97 ) 

(3.2-98) 

I hc restrictions on thc validity of the low frequency approximation. equ;:tions (3.2-97) 
8.,u t3.2-98), are derived from the well-known solutions for uristead- l i f t  cn th in  bodies in 
sutsonic and supersonic Row, refcrcnces 3-3 and 3-4. These solutions arc V Y ” ~  for k = O( 1 ) .  
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atid are given by thc wmpbx amplitudc of the velocity potential expressed as an integral ovcr 
thc tlriii body m a n  surfaces SW and appear as follows: 

For subsonic tlow 

;3.2-99) 

Fcr supcnonic Clow 

(3.2-100) 

and 
, (XI ,k't 1 i s  t h e  cnsteady load ampl i tuc ie .  

The limitations of tht low frequcncy approximation are folind from the conditions 
which must be placed on eqaations (3.2-99) and (3.2-100) to permit a convergent power wries 
expansion of the terms dependent on k. in the supersonic ~3%. equation (3.2-l00), &he 
expmertial terms ccntain the followicg geometric quantitirs: ( - XI) ,  ( - X), and R. Tt :se 
qu;ntitics influence the range of vallchy of the expznsicm. 

Assuming that the pot, *.'ial 3 to be evaluated in the neighborhood of the thin ho;y,  the 
quatititics I t .  X l l m a x ,  1: - .ii ,,.,x, and RInax are of ortlcr itnitg conipared with the 
dirnmsions of t ix  wing. 7'' - ponwtials in the integral for thz supcrsoriic cast: may 
therefore bs expandcl: FONC~S of k provided 
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'M establbnes the inequality given by equation (3.2-98). . or the subsonic case, however, it is 
not r!ear w'iether the exponential terms can be expanded m powers of k. The questior. arises 
because of the infinite lower limit of the outer integral, equation (3.2-99). 

FoUawing the analysis of reference 3-5, the. integral for sul mic flow is separated into 
two part$ as follcws: 

J -OD 

where H represents ths. w-face integral in equstion (3.2-99). The ktc;  ,ais or' integration are 
shown by figure 3.2-3. Ilie diqtance Xo is chosen such that the first integii, referred to 1 1  the 
foilowing as e become: an intepration from -0 to  a @ilt some chord lengths ahead of the 
thin body surface SW. The second integral, termed 4 ~ :  IS confined to the region occupied by 
the thL m d y  surfacc. 

Y 

R q '  ' 
I 
I 

I 

in tt 

./ 

I for, .I 
Integration 
*r¶r 4 

W 

FIGURE 3.2.9.-REGiONS OF 1N;'EGRATiON FOR SUBSONIt' =LOCi?Y FOTENTlAL 

Referring to tr;,ua'.ian (3.2-99), it is seen that the exronential term in 4% may b; 
expanded in powers of !; provided 

kcK I and k<< ( B 2 / h ,  

This establishes the inequality given by cquption (3.2-97). 
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The contribution to the potential #' from the fu f i ld  ahead of tbc thin body, viz, e, 
is approximated by introducing the fdlowing assumplions: 

(3.2-102) 

These exp ~issiorrs state analyticalIy the assumption that the potentials are to be evaluated in 
the region of the thin body and, thus,ovua region havingdhensions which are small by 
comparison with h. Performing the c .Xerentiation indicated in equation (3.2-99) and 
htroducing the assumptions of equation (3.2-102), the potential &becomes 

(3.2-1 03) 

For small reduced frequencies the last i n t e r n  in equation (3.2-103) becomes 

(3.2-104) 

.k 1 - - -  B2 -1- + +c2 In k + (terms of order  k2 and higher? 
2xc xo 

The relative magnitudes of these terns, however, cannot be established without relating the 
magnitude of X, to the dimensions of the sunace SW. 

The magnitude of Xo is implied by the fmt  of the assumptiotG listed as equation 
(3.2-102). C l ~ l y .  

(S-XI) min o Xo (3.2-1 05) 

Also, since dl dimensior, i are referred to  the reference length 7 by having defined k S C P ,  it 
follows that, when the reference length is taken to be the mean wing chord, a relationship in 
terms of aspect ratio is found, viz., 

B2(y-Y1I2max z B7(ARI2. ( 3.2-1 06) 
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Combinii equations (3.2-102) with equations (3.2-105) and (3.2-106) leads to the 
fdowingimquality: 

0 A!? X 0 (3.2-107) 

In oblrining the restriction of equation (3.2-97). however, it was assumed that the distance X, 
has the order of magnitude unity. Thus, the expansion of #& given by equation (3.2-104) 

haghwy termsin theexpansion of #& are dominant fork<< 1 and the term 1/2k% k 
and all higher order tennsin lt may be neglected. 

catl only be d i d  fotvew gnaU w t  =ti- Assuming BAR<< 1, the first real and- 

The analysis does not pmvide a xebbk estimate of the validity of the first ordcr in 
fkqwmcyappwcimation fatbin bodies havingan aspect ratio of order uni 0r-r. In 
t b  cases tbe expansion 
unity or snaller and, thus, leads to  co@zture r-g the admissible magnitude of the term 
lhk*ln k. The introduction of Luger aspect ratios, howevery violates the assumptions leading 
to the inequality expressed by equation (3.%97), and the magnitude of & relative to that of 

 show^ that the f i  term, viz., p* 2% 4 is of order 

#& becOmesuncertainaswen. 

Experie~ke with the method has shown that it gives reliable results for of aspect 
ratio less than 7 in subsonic flow, figures 3.2-10 and 3.2-1 1. No systematic effort, nowever, 
has bcin carried out to establish the limits of vdlidity for larger aspect ratios. Fm 3.2-19 
shows results for a circular wing, AR = 0.785. undergoing unsteady pitch oscillations at M = 0, 
0.5, and 0.9. The results are in terms of the r A  and imaginary parts of the lifting pressure. 
The discontinuous pressure distributim was computed using the low frequency approximation 
evaluated by the numerical method cor.taineJ in the FLEXSTAB system, while the 
continuous distributions were obtained hy e amatiing equation (3.2-1 2) using the method of 
refmnce 3-6. Figure 3.2-! 1 shows similar rmlts for the Boeing !S r wing planform, 
AR = 2.6 at M = 0.8. The comnarisons shown by figures 3.2-10 and 3.2-1 I indicate that the 
low frequency approximation is valid for low and moderate aspect ratios. A complete 
evaluation of the approximation's limitations, however, requires a parametric study involving 
at least aspect ratio, Mach number, and reduced frequency. 

3.3 FORMULATiON AS A SYSTEM OF INTEGRAL EQUATIONS 

The theoretical kvelopment of section 3:' has k d  to  a system of linear boundary value 
problems. summarized in section 3.2.7. Solutions to these boundary value problems are 
numerically evaluated by the FLEXSTAB system. They are constructed in this section in the 
form of a system of integral equations. The numerical evaluation method-applied to the 
system c i  integra1 equa ions-is derived in section 3.4. 

The solution to the aerodynamic problem is the sum of the velocity potentials ci$, 
t oa t ion  (3.2-10). Each 02' these velocity potentials is a linear combination of the functions 
+H (x,y,z; - q ~ ) ,  which are solutions to linear boundarb value problems, section 3.2.7. The 
boundary value problems &re all of the Same form, consisting of the clasqical steady flow 
equation and boundary conditions of the type encountered in steady aerodynamic problems. 
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- Method of reference 3-6. k << 1 
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FJGURE 3.2-1O.-COMPLEX AERODYNAMJC LOAD ON CIRCULAR WING OSCiLLATlNG 
IN PITCH ABOUT MJDCHORD 
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Following the usual approach, the solutions to these boundary value problems an formulated 
as integral equations involving integrals of distributicns of flow singularities (i.e., sou~(xs, 

doublets, and vorticities) on or interior to the surfaces where the boundary conditions are 
specified. The aerodynami;. problem then becomes one of fmding the strengths of the 
distributions such that the potentials *, rcpresented by the integral equations, satisfy the 
boundary conditions. 

Section 3.3.1 describes the general approach taken wherein the integral equations are 
reduced to  integrals on only the mean surfaces of the thin and slender Wes of a c o n f w -  
tion. In section 3.3.2, each of the boundary value problems is separated into two parts. One part 
is a boundary 0 alue problem governing the flow about a configuration component isdated in 
an undisturbed freestream. The second part is a boundary value problem governing the effects 
of interference. Finally, in section 3.3.3, integral equations governing the aerodynamic surface 
pressures are derived. 

3.3.1 General Approach 

3.3.1 -1 Fonnularion as an inre& equation-As shown by reference 2-3 and most 
theoretical aerodynamics texts, a solution to the homogeneous form of the f l t ’  5 equation, Le., 

in the flow fieid V enclosed by the surface S can be expressed by the following integral 
equation: 

where the functions Ks and KnD are, rzspectively, the expressions for unit sources and 
doublets located at points t,q,s on the enclosing surface S’ and are given as follows: 

Unit source: 

“ = - G E  1 1  f o r  M< 1 

f o r  M > 1  - 1 1  
27r R - - -  

Unit doublet with axis along the surface normal n: 

(3.3-2) 

(3.3-3) 
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where 

The functiorrs m(t, q, 5 )  and p( € ,I) .n specify the strengths of the sources and doublets 
distributed on S , and a solution to  a boundary value problem involving the homogeneous 
flow equation is constructed by finding the functions m and p so that #H satisfies boundary 
conditions specified everywhere on S. 

From section 3.2.7 it is seen that the solution to the Wing-Body Problem, 0, given by 
equation (3.2-91 1, is the sum of 7 solutions to the homogeneous flow equation. Each of 
these solutions must satisfy boundary conditions on the mean surfaces of the thin and slender 
body, SW + Sg, and on the wake surface, W. In addition, the potential 9 must vanish or 
remain finite at large distances from the wing-body combination, Le., on the surface Z shown 
by figure 3.34. The surface SW + SB + W +C, where the boundary conditions are specified, 
completely encloses the flow field V surrounding the aircraft: hence, each of the boundary 
value problems which must be solved is of the form which may be solved by solving the 
integral equation expressed by equation (3.3-1 ). 

FlGURF 3.3- 1.-SURFACES SURROUNDING THE FLOW FIELD 

3.3.1.2 Rdirction to an itrrcgral ott the tticuti siirfuws of tlrbi uiid .slctidcr hodicJs. nicrc 
are an indefinite number of different distributions, rn and p .  which. when substituted into 
equation (3.3-1). yield a potential satisfying spxific bc 'ary corditions on S. Since the 
boundary conditions do not determine the distributions .!rqucly. various arrangements of the. 
distributions tnay be k-onsidcrcd for any one boundary value problem and the analyst is free to 
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choose an arrangement which appears tc offer computational advantages. The arrangement 
ch0sr.n for tlic FLEXSTAB svstcm is L% :nthll) that of rcfcrcncr I - I  wlicrcin tlic intcgral 
equation. equation (3.34). is redumd to an integml on the mean surfaces of thin and dendcr 
bodies done. 

The reductior of the integral equation is achieved from a consideration of three 
chamctzristics of toe boundary conditions and the elementary, singular solutions. First. it is 
noted that the boundary conditions require that 4 vanish on the surface C in subsonic flow, 
while in supersonic flow 4 must vanish on certain portions of Z and m u t  be deterrnincd on 
the remaining portions of C by the distributions on Sw + SB + W. The functions m 
and p are therefore set to zero on Z, leading to 

+ H  = / /  + pKnD)dS 
sw+ SB+ w 

Second, sources produce only a symmetric flow disturbance inappropriate to th: wake; 
hence, m is set to  zero on W leading to 

0, = I/ rnKSdS + i (  pKnDdS 

’W + ’B sw + SB + w 

Third, the integral of the doublets on the wake surface is removed from direct consideration 
by considering the doublet distribution to be made up of line doublers, Le., lines of unit 
doublets lying paralkl to the X-axis. These line doublets yield a discontinuity in &$/ax at their 
ends; and, since the wake boundary condition requires this quantity to be continuous 
on W, the line doublets are originated on the mean surfaces a d  extend to infinity in the 
positive Xdirection. As shown by equation (5-35) of reference 2-3, the potential due to these 
line doublets may be expressed as follows: 

(3.3-4) 

V where K is recognized as the perturbation potential due to an elementary horseshoe vortex 
of unit  strength with bound element located at €,q,{. Using this result to replace all doublet 
distributions by distributions of vorticity, the integral equation reduces to 

(3.3-5) 

3-50 



where r(E,q,S) is the strength of the vorticity distribution on SW + SB. Equation (3.3-5) 
constitutes the desired result-an integral equation in terms of distributions on the surface 
SW + Sg alone. 

3.3.2 Method of Solution for Individual Flow Problems 

Each of thc individual flow problems. which are solved in constructing the solution to 
the aerodynamic problem for a configuration. section 3.2.7. is solved in two steps. Each 
bounaary condition among equatioris (3.2-97) involving non-zero flow incidence o n  one of the 
surfaces SW or SB is solved assuming the surface to be isolated from thc remainder of the 
configuration. i.c., ignoring the effects of interference. The? isolated thin and slender body 
solutions yield an interference flow ircidence denoted as q i l n t  at the mean surfaces. This 
interference flow is suppressed by a vorticiii distribution at thz niean surfaces ueceriiiincd by 
th2 expressio!i 

(3.3-6) 

Letting the vorticity and source distributions required to  satisfy the isolated flow problem be 
denoted as 

is0 and is0 
9 ‘i -. 

(3.3-7) 

the solution to  the problem including the effects of interference is given by 

(3.3-8) 
i s  oKS + mi 

The problem given by equation (3.3-6) and solved to determine *iint is termed the aero 
dynamic induction problem. 

This approach . applied tc  each of the following problems: 

Isolated thin body thickness (section 3.3.2. I ) 
Isolated thin body stcady lift (section 3.3.2.2) 
Isolated slender body thickness (section 3.3.2.3) 
Isolated slendcr body steady l i f t  (section 3.3.2.4) 
Steady aerodynamic induct ion (sec t ion 3.3.2.5 ) 
[solated thin body unsteady lift (section 3.3.2.h) 
Isolated slender body unsteady l i f t  (section 3.3.2.7) 
Unsteady aerodyriarnic induction (section 3.3.2.8) 
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This development is applicable to arbitrary configurations, not just the Wing-Body 
Prohlem. Equations (3.3-6) through (3.3-7) take cn the appropriate mwning by letting Sw 
and Sg represent the total surface area of the mean surfaces of any number of thin and slender 
bodies, i.e.. 

N 

I= 1 sw = z swi (3.3-9) 

M 
SB = c SBJ 

J= 1 (3.3-10) 

where Swl is the mean surface of the lth thin body and SWJ is the mean surfaci of the J th  
slender body. 

3.3.2.1 Isolated thiii body thickness problem.-The isolated thickness problem for a thin 
body is discussed in detail in sections 7-2 and 8-2 of reference 2-3. The thickness shape of the 
Iih thin body is givcii by equation 3.2-1 2 as follows: 

(3.3-1 1)  

in the local axis system of the body. The problem consists of tinding the source distribution 
m(X1,YI) on the mean surface such that the potential 

satisfi P the boundary condition, equation (3.242c), 

- -  GI - 
azI 

on the m a n  surface of thc I th  thin body. 

i ls  shown by reference 2-3, it follows dircctly from the properties of the source 
cFstribution that the required distributioa i-i 

1 aFI “(XI,Y1) = -T...-(X ,Y 1. 2 d.ax ,  I I 

(3.3-! 3) 

(3.3-1 4) 
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- The solution to the isolated thickness problem for the Ith thin body now follows directly as 

3.3.2.2 Isolated thin body steady lifting problem.-In the FLEXSTAB system the steady 
Lifting problem for both subsonic and supersonic flow is solved by fmding the appropriate 
vorticity distribution on the mean surface of the thin body essentially as shown by section 7-3 
of reference 2-3, for subsonic flow. The integral equation appears as 

and the problem consists of finding the vorticity distribution T(XI,YI) such that the potential 
~ ~ ( X I , Y I , Z I )  satisfies the thin body surface boundary conditions, equations (3.242): 

aH h h - aGWI = WXw(t)cosBI - VXv(t)sinOI t @ A @ ( t ) -  
azI axI 

(3.3-17) 
+ Y W I  V 

n the mean surface SWI for a specified instant of time t, Le., by solving the integral 
equation 

(3.3.- 18) 
aH - vVX sinOI t @ X @ ( t ) - - -  

n 

V 

for ‘Yo(X~,Y~). Substituting the resulting vorticity distribution into equation (3.3-1 6) yields 
the desired solution. 

3.3.2.3 isolated slertder body thicknm problem.-The isolated slender body thickness 
problem is formulated in the FLEXSTAB system using the boundary conditions of classical 
slender body theory derived in sections 9.13 and 9.14 of reference 3-7. Tl~e slender body 
thickness boundary condition, given by equation (3.242e), is therefore replaced by the 
following boundary ccndi tion: 

(3.3- 19) 
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on the surface S i J  of an equivalent body of revolution about the mean centerline, figure 
3.3-2, where r is the cylindrical coordinate normal to the mean centerline. 

t 
Circular cross section equivalent to 
actual body cross section 

!A Surface of body of revolution sBJ 

FIGURE 3.3-2.-SiE/vDER BODY CROSS SECTION 
FOR CLASSICAL SLENDER BODY THEORY 

The effects of slender body thickness are represented by sources distributed along the 
mean centerline; thus the perturbation velocity induced by thickness of the Jth slender body 
is given by 

where LBJ is the length of the slender body centerline. The distribution m(Xi ) is determined 
by requiring #BJ S to satisfy equation (3.3-19) on S ~ J  , i.e., by solving the integral equation 

(3.3-21) 

U J 

for m(X; ). Substituting the resulting sourtx distribution into equation (3.3-20) yields :he 
desired solution. 

3.3.2.4 .[solated slender body steady 11 [i8?g problem.-As in section 3.3.2.3, the isolated 
slender body steady lifting probleni is formu: ted using the boundary conditions of classical 
slender aody thexy. The bounclPry coiditi<i. .. given by equations (3.2-42a,b,e,f) are replaced 
by the follo+*ig boundary conditions on the surface SBJ shown by figure 3.3-2: 
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I\ A 

v -  = vhv(t) cosp ar 

cosy b -  = b h b ( t )  - aG J n A 

a r  

d l  
c - 8 4 7  = Ehc(t)- s i n p  a r  

(3.3-22) 

The solutions to these problems are expressed in terms of doublets distributed along the 
mean centerline of the body. Using the terminology of section 9.14 of reference 3-7, the 
problems posed by (a) and (d) represent a cross flow in the ZJ direction, while those posed by 
(b) and (c) represent a cross flow in the YJ direction. The ZJ cross-flow problems have the 
solutions 

“B J 

while the YJ cross-flow problems have the solutions 

where. in the notation of equation (3.3-3), 

and 

(3.3-24) 

(3.3-25) 

(3 .3-26)  
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The integral equations which must he solved to determine the distributions p O z ( X j )  and 
po Y (XJ) are as follows: 

obtained by evaluating the coordinates p,r as p = u/2 and r = ZJ, figure 3.3-2; and 

(3.3-28) 
aGJ A A 

Y -  a K Y D  dX; = v A v ( t ) V  + bAb(tI- ,r P o  ayJ 
"BJ 

obtained by evaluating the coordinates p,r as c = 0, and r = YJ, figure 3.3.2. The isolated 
slender body steady Lifting problem is solved by substituting the resulting doublet distribu- 
tions into equations (3.3-23) and 3.3-24). 

3.3.2.5 Steady aerodynamic induction problem.-Sections 3.3.2.1 through 3.3.2.4 give 
solutions to the aerodynamic problems pxed  by configuration components, viz. thin and 
slender bodies, when they are isolated from one another, ignoring mutual interfeience 
between the corny. mentr. The effects of interference are accounted for in thc aerodynamic 
induction problem, wherein vorticity is distributed on the mean surfaces of .ill the configura- 
tion components to account for the effects of interference. The solution to the problem is 
therefore .@. -*I by the following integral equation- 

where t,q,{ is a point on a mean surface, SW + Sg is the total mean surface, and 'Yo(l,v, {) is 
the vorticity induced by steady aerodynamic interference. 

As noted in section 3.3.2, the vorticity appearing in equation (3.2-29) is that required to 
suppress interference flow induced at the mean surfaces. The interference Cow at  the mean 
surfaces is computed as a normal derivative of the potentials represcnting solutions to the 
isolated body problems. As an example, consider the solution ta  the isolated thickness 
problem for the Ith thin body, equation (3.3-1 5 ) .  The interfercnce flow is found by evaluating 

at the mean surfices of all bodies of a configuration except the I t h  thin body. 'The resulting 
flow ircidence is set equal in magnitude but opposite in  sign to that induced by the vorticity 
of eqi.ation (3.3-29), i.e., 
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This integral equation is solved and the resulting vorticity dtstribution is substituted into 
equation (3.3-29). The resulting velocity potenhill is the soiution to the aerodynamic 
induction problem governing the interference effects from isolated thickness of the I* 
thin body. 

The above operations are carried out for each isolated bojy pnblem associated with a 
configuration. The sum of the potent& fo the isolated body problems and their correspond- 
ing aerodynamic induction problems constitutes a solution to the steady aerodynamic 
problem for a complete c o n f w t i o n .  

3.3.2.6 Isohted thin b d y  unstazdy lifing problcm.-The solutions to the unsteady flow 
problems are all of the form derived in section 3.2.6 and are given by equation (3.2-91 ), i.e., 

In the case of the isolated thin body unsteady lifting problem, the first term of equation 
(3.2-91) represents the solution to the isolated thin body steady lifting problem of section 
3.3.2.2, Le., 

where 
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The remainder of the solution to the unsteady problem is represented in terms of three 
vorticity distributions on the thin body m a n  surface as follows: 

SUI 

The three vorticity dis;ributions 71,72,73 are detennined by solving the following three 
integral equations: 

swI 

= aKv  dS 
y, az, 

swI 
(3 -3-34) 
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The resulting vortiaty distriiiitions am thcn substituted into equation (3.3-33). thereby 
co- - the unsteady contribution to the isdated thin body liflingpobkm.The 
compkte solution is obtained by comb- equations (3.3-32) and (3.3-33) to obtain 

X (3.3-35) 
11 y,KVdS - /I y3K V dS1 

-- %I swI 

This result expresses the potential i n d u d  by the isokted thin body subjected to slowly 
varying flow incidence. Redling equation (33-17), the solutim is seen to de-pend on 

and (33-36) 

33.2.7 Isdorcd slender body unstaufy lifring pro&m-In the case of the slender body. 
the ped form for solution to the unsteady problems, equation (3.2-92), may be ampl i fd .  
The solution to the steady component of the flow problem, section 3.3.2.4, induces a 
continuous velocity potential at the wake surface; hence, the wake boundary condition for the 
fhttorder unsteady problem, equation (3.2-53), reduces to  

Because of this simplification, the third homogemom term in the solution to thc fust+rdei 
problem, equation (3.2-89), may be deleted. The form of the solution to the unsteady isdated 
dentier body lifting problem is p e n  by equatibn (3.2-92) with the final terms in brackets 
deleted. Le., 

(3.3-3 7 ) 

wherc the first term is the steady flow solution of section 3.3.2.4. 
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The unsteady flow problem k separated into crossflaw problems in the YJ and ZJ 
dirtctions as in the case of steady flow, section 3.3.2.4, with the boundary conditim 
expressed as 

A L (33-38) 
sinp =-uaw(t)V s i n p  - cx c (t) - ZD - a ZD 

(rBJ = - -(@ ar &J 

It is noted that tkst expresdons are evaluated at the d a c e  of the body of revolution dwwn 
by figure 3.3-2. The sdutions are then given by 

where the docblet distributions p l y  and pzY are required to satisfy the integral equations 

'BJ ( 3 . 3 4 )  
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(33-4 1 ) 

7D - T j l12Z(X;)h’ (XJ,YJ,ZJ;X;)dX; 

and where the doublet distributions plZ,pzz 3re required to satisfy the integral equations 

(3.342) 

”BJ 

Tlte solution is constructed by determining the doublet distributions satisfying the integral 
eauaions, equations 13.3-40) and (3.342), and substituting the resuits into equations (3.3-39) 
a id  ( 3.341). 

3.32 Jnsteady aerodynamic induction problem. -The effects of unsteady interference 
flow are ,,counted for in the solution to  the unsteady aerodynamic induction problem. As in 
the t.- i e  of steady interference, section 3.3.2.5, the solution is expressed in terms of vorticity 
dii....ibutcd on the mean surfaces of all components of a configuration. The form of the 
,Jution is given by equation (3.2-92); hence, in terms of vorticity on the mean surfaces, the 
solur ion is given by 
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(3.343) 

'w + SB 

where the intdixence vorticity distriitions are required to satisfy thz unsteady interference 
boundary conditions generated from the isolated body solutions of sections 3.3.2.6 and 
33.2.7. For the example of unsteady cross flow in the ZJ direction, the integral equations are 
as fdows: 

i n t  
a K v  - dS v a t a n -  an  

(3.344) 

sw + sB W --a0 + 

Integral equations of the type shown by equation (3.344) are solved for each of the 
isolated body unsteady flow problems, and the interference problem for a complete confiyra- 
tion is solved by substituting the combined interference vorticity distribution into 
equation (3.343). 

3.3.3 Integral Equations Describmg the Aerodynamic Surface Ressure 

The fmt-order approximation to the aerodynamic pressure is given by equation (3.2-29) 
(or in compact notation, equation (3.2-93)), and is related to the flow incidence prescribed by 
the boundary conditions by combining equations (3.2-91) and (3.2-93) to find 
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c (x,y,z;Y,+im = - 2I4l (x ,y ,z ;  -vi) 
P HX 

M* 
+ fj'CX4l (x,y,z; - + p J 1  - 4, (x ,y,z;  - X + p ) l  

Hx X 

(3.3-45) 

or for the case of steady flow 

When the low frequency approximation is applied to  the problem of an isolated slender body 
in unsteady flow, a case in which there is no  wake, the unsteady pressure coefficient is given 
bY 

c (x ,y ,2 ;Yi ,yJ)  = -219, (x ,y,z;  -li) 
X P 

M2 
+ F'C"4 (x ,y ,z ;  -+i/u) - t#lH (x,y,z; -x4i/u)] 

HX X (3.34) 

For the case of an isolated slender body in steady flow, the induced pressure coefficient is 
given by equation (3.3-45). The aerodynamic surface pressure is found simply by evaluating 
these equations at the aerodynamic surfaces. Equations (3.344). (3.343, and (3.3-46) are 
formed as integral equations representing aerodynamic surface pressure by combining them 
with the results of section 3.3.2 as follows. 

Isolated thin body thickness pressure: Combining equations (3.3-1 5)  and (3.345). 

where ZI= *qFl(XIIYI) is the thickness shape. 
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Isokfd thin body steady lifting pressure: Combining equations (3.3-16 and (3.345). 

Cv (X,,YI,ZIl = -2 / I  yo q X ; d Y ;  aKv 

PWI - swI 
(3.348) 

where vo(X1Y1) is given by equation (3.3-18). 

Isolated slender body fhickness presrure: Combining equations (3.3-20) and (3.345). 

cs (xJ,yJ,~;) = -2 m 4 x ;  a KS 
PBJ L~~ a xJ 

(3.3-39) 

where m(XJ) is given by equation (3.3-21). 

Isolated slender body steady lifting pressure: Combining equations (3.3-23) and (3.345), 

(3.3-50) 
C ZD = - 2  J 

L~ J PB J 

where p o z ( X ~ )  is given by equation (3.3-27); and combining equations (3.3-24) and ( 3 . 3 4 9 ,  

CYD 
PEJ 

-2 j lJy 0 

LBJ cl 

where poy(X~)  is given by :q uation (3.3-28). 

Steady interference pressure: Combining equations (3.3-20) and (3.3-49, 

int a KV 
d S  c" (X,Y,Z) = - 2  (( yo - 

Pint sw + s g  
ax  

(3.3-5 1 ) 

(3.3-52) 

where -foint(X,Y,Z) is obtained by solving the steady aerodynamic induction problms of 
which equation (3.3-3 1 ) is typical. 
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Isolated thin body unsteady lifting pressure: Substituting into equations (3.3-44), 
solutions to the homogeneous flow probltms are constructed by solving the integral equations 
posed by equations (3.3-34). These operations lead to 

cuv (XI,YI,ZT) = -2 J /  y, F S  a K b  

PWI s w I  

(3.3-53) 

where Y,(X~,Y~) ,  Y2(X1Y1), Y~(XI,YI) are the vorticity distributions found by solving 
equations (3.3-34). 

Isolated slender body unsteady lifting pressure: Substituting into equations (3 .343,  the 
solutions to the homogeneous flow problems are constructed by solving the integral equations 
posed by equations (3.340). These operations lead to  

2 Y YD 
CYD (XJ,YJ,ZJ) = -2 J I J ~  

PBJ L~ J LE J 
- ~2 1 p 1 K  dX; 

3.3-54) 

where p lY(x  ) and p2 Y (XJ) are given by equations (3.3-40); while, for the integral equations 
posed by equations (3.342) 

C Z D  (XJ,YJ,ZJ) = -2 / pc 2 Z ZD 
- $2 p l K  dX; 

L~~ L~~ PBJ 

(3.3-55) 



where rlz(xJ) and M ~ ~ ( X J )  are the doublet distribution sbengths found by solving equations 
(3.3-42). 

Unsteady interference pressure: Combining equations (3.3-42) and (3.3-44), 

i n t  aKV M2 intaKV 
( X , Y , Z )  = -2 /J Yo *S - 2 p c x  $1 y, *S CUV 

'W+ 'B :.w + SB P i n t  

(3.3-56) 
i n t  KV eS 2 i n t  KV 

- li Y 2  &SI + p I/ Y3 
'W ' 'B 'W + 'B 

where 71int(X,Y,Z), T ~ ~ ~ ( X , Y , ~ ) ,  Y3bt(X,Y,Z) are the vorticity strengths found by solving 
equations (3.3-44). 
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3.4 NUMERICAL SOLUTION 

For practical aircraft configurations, an exact-numerical solution to the integral 
equations derived in section 3.3 is not possible. An approximate solution is obtained in the 
FLEXSTAB system using a method based on a paneling scheme. The surfaces and lir es of 
integration are subdivided into small regons as shown by figure 3.4-1. Tliese small rtgions 
consist of quadrilateral panels on mean surfaces and line segments on mean centerlines. 
Simple distributior functions having unknown amplitudes are assumed for the flow 
singularities (i.e., sources, vorticity, and doublets) on the small regions of integration, and 
the integration is camed out. These operations reduce the integral equations to algebraic 
equations in terms of the u:iknown amplitudes, Le., the strengths of the distributions. The 
algebraic equations are chosen to be determinant sets for each of the aerodynamic problems 
in section 3.3, and they are solved directly. 

3.4.1 Paneling Scheme 

In using the paneling scheme, the mean surfaces of the thin and slender bodies are 
subdivided into small panel areas, t'igure 3.4-1. The mean surface of the Ith thin body is 
covered by nI planes, whence 

nI - 
swI  - swIr (3.41 ) i= 1 

where SwIi is the surface area of the ith panel. Similarly, the mean >urface of tile Jth slender 
body is coverzd by mJ panels, 

mJ 

j = l  
'BJ = ' 'BJj (3.42) 

The centerlines of the slender bodies are also subdivided, figure 3.4-2; and the 
subdivisions are line segments of length L B J ~ .  The line segments on the Jttl slender body 
centerline. whose number is denoted as 1 J, provide a coveri.,; of the centerline. Thus. 

1J - 
L~~ - K= ' 1 L B J ~  (3 4-3) 
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FIGURE 3.4.?- TYPICAL SURFACE PANELING ARRANGEMENT 

Surface corresponding to kth line segment 

L - 1  

FIGURE 3.4-2. -- T YPICA L CENTER L I NE SEGMENT A R RA NG EM EN T 
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3.4. I .  I Local panel coordinate axis systems.-A local axis system is introduced for 
each mean surface panel, as shown by figure 3.4-3. For the ith panel on the Ith mean 
surface, the origin of the local coordinate system has the coordinates Xi;!’: j, YliiD? ?.ii(O) 
in the Reference Axis System. The surface of the panel is coincident with tiir t ~ .  ;I, pme,  
and BIi is the panel dihedral angle. The transformatiott from the Reference 1 stem to 
the local panel axis system is given by 

FIGURE 3.4-3. - L OCA L A XIS SYSTEM 

3.4. .‘ .2 Local litie segmvit coordinate axis .sysiet~is. - A  local axis systen: is introduced 
for each ,,lender body mean centcrline segment, figurc 3.4-4. For 5hc i t h  segmcnt of the 
mean ceritcrline of the Jth slender body, the origin of the local axis systcm has the 
coordinJtes XJj(O), YJj(O), ZJjCO) in the Referrnce Axis System. The axis is coincident 
with t!ie mean centerline, and t!ie t ~ j ,  VJ, plane may be either parr.Ili.1 with the X, Y plane or 
the X,Z plane of the Reference Axis System. The transformation f om the Reference Axis 
Syitem to the local line segment axis system is therefore given by 

J. 
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L Slander body mean ceqterline segmect 

FIGURE ,3.4-4.-LOCAL CENTERLINE SEGMENT COORDINATE SYSTEM 

3.4.1.3 Paneigeornetry.-A typical mean surface panel is shown by fig Ire 3.4-5. AI1 
panels are quadrilaterals with two edges parallel to the X-axis of the Reference Axis System. 
The panel span is denoted as bi, and the inboard chord length as Ci. The tangents of the 
angles of sweep of the leading and trailing edges are denoted as (dtT/dq)i and (dgL/dv)i. 
Finally, a point called a contrcl point is defined for each panel. 

Panel control point 

FIGURE 3.4-5.-TYPlCA1 MEAN SURFACE PANEL 

Panel control point 

v 
FIGURE 3.4-5.-TYPlCAl. MEAN SURFACE PANEL 

“I i 
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3.4.1.4 Patieling amzngement.-Mean surfaLx panels always occur in mws of constant 
span as shown by figure 3.4-6. The panel control points to  be used later in the development 
are located along the area centroid line of the panel row. Zyirz: 3.4-6. A single cmirol point 
is located on cach panel. 

z 

P a d  control points 

v 

Row of mean surface panets 

F!GURE 3.4-6.-MEAN SURFACE PANEL ROW 

The entire mean surface J f  every thin and slender body of a configuration is covered 
by quat' 'I3ter.d panels as shown by figure 3-41, with the panels arransed in streamwise 
rows parallel to the X-axis. Because the panels 3re planar svrfaces, the mean surfaces of 
slender bodies must be cylinders with polygonal cross sections, figure 3.47. 

row 

Polygon cross seaionJ 

FIGURE 3.4-7.-SLENDER BODY MEAN SURFACE PANELS 
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The fact that the slender body mean surface must be cylindrical leads to  3 compromise 
in representing the mean surface of a wing-body-tail configuration, as shown by fm 3.4-8. 
Assumig the actual body to be taped ,  a portion of the tail surface falls interior to the 
mean surfice of the slender body, while the wiqg surface must be extended from its d u a l  
root iocation to meet the slender body mean surface. 

FIGURE 3.48.4LENDER BODY MEAN SURFACE 
FOR A WING-BODY-TAIL COMBINATION 

3-4.1.5 fnrage sysrenr of panels and line segments. - FLEXSTAB is designed to 
evaluate aircraft configurations having a plant. of geometric. structural. and inertial 
symmetry. The X,Z plane of the Reference Axis System is the plane of symmetry. As a 
consequence of the assumed geometric symmetp, the solution to  the aerodynai 'c problem 
can be expressed in terms of functions either symmetric or antisymmetric in ti - 1 

coordinate using the X.2 plane as an image plane. 

The geometric symmetry is employed in the paneling scheme. For every mean surface 
panel or mean centerline segment on the right of the X,Z plane there is a mirror image on 
the left of the X,Z plane, figure 3.4-9. Only the panels and centerline segments on and to 
the right of the X.Z plane appear explicitly in the following analysis. 

For exmple, the perturbation velocity potential induced by a flow singularity 
distributed on the ith panel of the It!' thin body is denoted as 

The value ol'this potential at the control point orl tlie jtll panel of the Jt l l  slender body 
mean surfrrce is denoted as 

' B J b i I j  i (3.47) 
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FIGURE 3.49.4MAGE SYSTEM OF PANELS AND LINE SEGMENTS 

Letting the coordinates of  this control point in the Reference Axis System be denoted as 
X(Jj), Y(Jj). ZCJj,, the value of the velocity potential at the cmtrol point is taken to be 

(3.48) 
(X(J j), - Y(Jj),Z(Jj)) ' k i  

where the second term introduces the contribution to the value of the potential supplied by 
the image panel, fewe 3-47. The plus sign for the second term yields a symmetric 
digribution of the flow singularity. while the minus sign yields an antisymmetric 
distribution. 

All values of velocity potentials and velocity components at control points appearing in 
the following are obtained using formulations corresponding to the example shown by 
equation (3.4-8). For brevity of the development. however, all formulas describing these 
quantities will be expressed for the right side of the aircraft only. When these formulas are 
evaluated. the reader may infer that they are evaluated in the manner used in equation 
(3.4-8) whether this is explicitly stated or not. 

3.4.1.6 Flow incidence at panel cmtrulpoitits. -Tile tirst-oder boundary conditions 
of section 3.2 are all in terms of flow incidence evaluated at the mean surfaces. Each of the 
perturbation potentials must therefore satisfy boundary conditions of the following form at 
each panel control point: 

where 8 J j  i:: the dihedral angle. figure 3.4-3. of the jth panel taken for !lie example to hr on 
the Jth slcnder body. 
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In the following, the nondimensional velocity components in the Reference Axis 
System. 

3 
aY v =  

are expressed in terms of components expanded on the local axis systems introduced by 
sections 3.4. I .  1 and 3.4.1.2. The tatter velocity components are induced by the flow 
singdarities distributed on the mean surface panels and mean centerline se!gments. If the 
velocity components are induced by a panel, they are expressed as in the following example: 

and 
(3.41 0)  

where for the example @wri is the perturktion velocity potential due to a flow singularity 
distributed on the ith panel of the tth thin body. If the velocity components are induced by 
a line segment. for example the kth segment Oil the centerline of the Kth slender body. then 
they are as follows: 

and 
(3.4-1 I )  

.- 1 "BKk 
r a8 

- -- - V 
'BKk 

where the coordinates rand 8 are those shown by figure 3.4-10. 

The velocity components given by equations (3.4-10) and (3.4-1 I )  are transformed to 
the Reference Axis System and substituted into equation (3.4-9) to obtain the desired flow 
incidence as follows: 

sin(0 -Oli)  (3.41 2) B J W I  j i J j  
= v  "EIJWT j i 

and 

(3.4-1 3) 
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f Kk 

t 

f 
L I-- panel 

FIGURE 3.4-10.-VELOCITY COMPONENTS INDUCED ATPANEL CONTROL POINTS 

3.4.2 Isolated Thin Body Thickness Problem 

The solution to the isolated thin body thickness problem is given by section 3 - 3 2  I as 
a source sheet located on the thin body mean surface and as having the following distn- 
bution of strength: 

m ( X  Y 1 = T"cI 1 --(XI>YI) aFI a,,I 
I' I 

(3.4- 14) 

In the FLEXSTAB system the source distribution on each panel. figure 3-45. is given by 

cs where Swli is the strength of a uniform source distribution 3nd S& is the strength of a 
source distribution which varies linearly in [li. 

The strength of the uniform (or constant) part of the source di.trihution is chosen so 
that the th in  body has the correct thickness at the panel edges along the pant1 row centroid 
line, figure 3.4-6. At thew points on the i th  panel the ordinates of the body thickness shape 
3re denotcd as 
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Z$i) = rIF+i): ordinate a t  panel leading edge 

Zl(i+l) = rIFI(i+I ): ordinate at panel trailing edge 

Letting 4 denotz the chord length of the panel along the panel row centroid line, the 
constant strength part of the source distribution is given by 

(3.41 6)  

The thickness shape at an arbitrary point XI.YI on the thin body m a n  surface is found 
as 

(3.41 7 )  

where Xl(L) is the coordinate of the leading edge of the thin body at YI. 

Substituting the source distribution given by equation (3.415) into equation (3.41 7) 
and integrating s:iows that the thickness shape varies as a quadratic in XI between the panel 
edges. but with the thickness at the panel cdge solely a consequence of the constant strength 
part of the source distribution. The quadratic variation is specified by choosing the 
magnitude of the linearty varying part of the source distributicn. viz., S G i -  These coeffi- 
cients are computed by the formula 

(3.41 8 )  1 cs 
' W I i + l  - ' W I i - 1  - - - 

i " i + 1 / 2  + 'i-;/2 c +  'MI i 
Ls = [ cs 

and lead to an average thickness suriace slope on the ith panel equal to the average slope of 
the thickness shape represented by the constant strength distributions of the panels just 
forward ana aft of the ith panel. T i c  resulting thickness shape consists of a series of 
quadratics passing through the ordinaics of the actual thickness shape 3t the panel edges. 

The solution to the isolated thickness problem is now expressed LIS follows: 

(3.41 9) 

CC LS where the quantities 4l;iIi and @wri are potentials induced by distributions of unit strength. 
These unit potentials arc computed in the local panel axis systcms vring equation (3.4-4) 
and. for subsonic and supersonic flow. appear as follo~s: 
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Subsonic f l ~ w :  
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3-42. I Isohted thin body thickness interference flow incideiice. -The solution to +he 
isolated thin body thickness problem for the Ith thin body, equation (3.4-19), m.iy give rise 
to now incidence at the mean surfaces of all other t h k  and slender bodies which are 
components of the aircraft configuration. This flow incidence is the interference flow 
incidence described in section 3.3.2. equation (3.3-6), and is computed at all control imints 
of the mean surfam 2anels except those on the Ith thin body wherc it must vanish. 

The interference flow incidence is computed by equation (3.4-1 2). To use this formula, 
the velocity components shown by equations (3.4-1 0 )  must first be computed from the 
potentia1 describing the solution to  thc isolated thickness problem, equation (3.419). These 
velocity components are given by 

and 

P 

cs scs n1 LS sLs ws = c  w W I i  WIi + i=l " W I i  W I i  '1 i=l 

where 

(3.4-23) 

(3.424) 

Evaluating the velocity components at the control points, using the method of section 
3.4.1.5. and substituting into eouatior. (3.4-1 2),  leads to the interference flow incidence on 
the Kth  thin body nimn surface as 
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and on the J th slender body mean surface as 

n1 cs n1 LS LS cs 
+ ' a B J W I j i S W I i  ' B J j  - a B J W I j i S W I i  i=l 

s -  
i= 1 

(3.426) 

cs where, for example, aBJ--1" is the flow incidence shown by equation (3.41 2) when that 
equation is evaluated using the potential induced by a uniform source distribution of unit 
strength on the ith panel of the Ith thin body, Le., 

J l  

cs s i n  ( e  -eIi) - cs - 
BJWI;; - + v w I i  J j  

a 
J -  

1 cs 
Ii - wwIicOs (eJj -e  

When evaluated at the control points on all mean surfaces of a configuration and 
expressed for all thin bodies used in the configuration, equations (3.425) and (3.4-26; are 
expressed in matrix form as follows: 

(3.427) 

w l v x  the matrix elements have the following arrangement for a configuration consisting of 
N thin bodies and M slender bodies: 

interference flow incidence matrix, 

(3.428) 
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influence coefficient matrix for uniform source distributions. 

CaCS -J a .  . Lacs 1 B1,W1 81 ,WN 

cs c aB” ,,I = 

0 . . . .  . 
0 . 

cs 3 0 . 0  cs 
C a ~ ~ , ~ l  CaBM, W N l ;  

cs 1 cs 
CaW1,W1’ ‘=Wl,WN . . 

0 

0 

. . . 
cs - 
WN , W N ~  cs I . . .  [a WN ,W1 l a  

source distribution strength matrices, 

LS ts, l z  

ana influencc coefficient matrix for linear source distributions. 

1 LS ] ..* LS 
[.=€31 ,wl ,WN . 

0 

. . 
e 

L S  is 3 
[“B!!,Wl’ * * *  [‘BM,WN 

0 . . . 
Ls J ... [p  ] 

[ a W I J , W 1  WN,WN 

(3.4-29) 

(3.4-30) 

(3.4-3 I ) 
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3.4.3.2 Isohred thin body thickness pressure. -The aerodynaniic pressure induced by 
the isolated thin body thickness problem, a steady flow problem, is computed on the basis 
of equation (3.347). Substituting the solution for the Ith thin body, equation (3.4-19), into 
equation (3 347), leads to the pressure distribution 

(3 A-32) 

i=l 

where 

LS - 
%I i= 

LS 
a @ w I i  

(3.4-33) 

This pressure distribution is evaluated at the area centroids of the mean surface panels, and 
the result for the jth panel centroid is expressed as: 

(3.4-34) 
i=1 

CS 
'WI j 

When expressed for all panel centroids, equation (3.434) is expressed in matrix form as 

where I ,Sw CSI I and ;Sw i LS) I are as defined by equations (3.4-30), while the pressurc coefficients 

at the panel centroids are given by 

(3.436) 
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and the pressure influence coefficient matrices are given by 

[CPMw,wI cs E 

[CPMWIwI LS Z 

- 
cs 1 * * *  c-2uy;l,wN;1 cs 

-2uw1, w1 

b 
b 

b 
b 

cs 
(3.4-37) 

- 
[-2uw1,w1 3 * . *  C-?uW1,wN1l LS 

. 
e 

b I 

3.4.2.3 Isolated thiii body thickness induced velocitj. coinpoireiits. -The computations 
for isolated thin body thickness interference flow incidence and pressure, sections 3.4.2.1 
and 3.4.2.2, require the following velocity components: 

These components, in terms of the local pant4 axis system, section 3.4.1. I ,  are derived in 
this section. 

C'S I F  Again. letting Qwli and @gIi denote the velocity potential indiict.tl by tlie unit soiirce 
distributions on the it11 panel of the l t l l  th in  body. the d.irccl velocity componcnts arc 
found as 
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For supersonic flow the velocity components induced by the source panel distributions are 
found by the FLEXSTAB system using the tormulas given by equations (22) and (27) of 
Reference 1-1. For subsonic flow the velocitu ccmponents are developed* as follows: 

For the constant strength distribution, the velocity potential induced by the ith panel 
of the Ith thin body is 

where the subscripts indicate the coordinates of the panel corner points, figure 3.4-5. The 
integration with respect t o  i' is carried out to  find 

where 

*To simplify the notation, subscripts are deleted on the symbols denoting the local pmd 
axis systcm coordinates. ti.e., ~li.T)li,{li appear as E,q.t 
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Thc nondimensional velocity compoiients are computed from this velotity potential as 
follows : 

(3.4- 41)) 

- R 2 c  
L q m +  L; + a2 1 1  

The integration with respect to  q is carried out numerically in the FLEXSTAB systelii with 
the singularicies in the integrals evaluated using the procedure described in section 5.3 of 
reference 3- 10. 

For the linear variation in the source distribution. the velocity potential is given by 

where g' is a linear function of t ,  7) :itid (3.4-41) 
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wnere I(#") is the integrand of equation (3.438). The nondimensional velocity compo- 
nents are found by differentiating $v,i LS witn respect to l.q.f to find 

wlir'rc, l f i ~ [ - ~ ) .  

indicated i l l  cqiia:ions (3 .443)  arc carrir'd out numr'rically with tlic siiigularitics in thc integrals 
cv:~!~i.itcd iisiiig thc pro, :durc o f  scztion 5.3 of rcfcrciicc 3-10. 

I(wcs) arc, the i n t c p n d s  of squations (3.4401. Tlic intcptions 
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Letting ro be the distance from the centroid of the influencing panel t o  the point 
where u. Y, and w are evaluated, the flow fEld is separated into near. intermediate and far 
fields as ~QUOWS: 

ro<2.45do : near f i e l d  

2 .45do<ro<4 .Odo : intermediate 2 i e l d  (3-4-44) 

4. Od, <yo : far field 

where do is the major diagonal of the quadrilateral panel. figure 3.4-1 2. 

L c _ I  

FIGURE 3.&12.-MAJOR DIAGONAL OF A MEAN SURFACE PANEL 

The values of velocity potentials for the two panel source distributions. equxtions 
(3.4-38) and :3.441), in the intermediate and far fields are expressed iil wries fornl. The 
integands appearing in equations (3-4-38) and (3 .441 1 are espandsd in 3 Taylor wries 
about the area centroid of the panel at io. q0. tTgure 3-41 2. Followin_p the expansion. the 
terms of the wries are integrated thereby yielding a series reprzsentation for the velocity 
potentials. For the ur..r *rm source panels the series expressioq is given h j  

+ (terms of higher .  order ir. - 
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Successive terms in the series are of higher order in terms of the r e c i p d  of the radial 
distance 

Thus, for mints of evaluation E.q.3 for which 
are negligibly small. For points in the intermediate field the potential is approximaid by 
deleting terms denoted as higher o d e r  in equation (3.445). For points in the far field only 
the fmt term is retained and the potential is approximated as 

is slifficiently large, the higher order terms 

i-e., the potential due to a source located at the point to.qo- 

The nondimensiondl velocity components induced by the uniform source distribution 
on a panel are found by diifemntiating the potentials. and appear as follows: 

For the intermediatc field. 
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382 <n-rlc) (5 -50)2  
+ -  -- C-5 + 1115 

R: 0 
R2 0 0  

2 

2 ( 5  ,I2 
-'I5 E. 2 Ri 0 0  

+ 3 B [ l - 5 -  

For the f3r tirld. 

cs - 1 (5-5, 

R: 
'MI i _ - -  

WIi 47r U 

(3.4-47) 

A similar development for the linearly varying source strcripth panels giws tlrc 
following nondimensional velocity components: 



For the intermediate field, 

(3.4-48) 
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For the far field. 

(3.349) 

where H. i t ,  &,. et, gp,, and gm are eua!\iated at the centrclid nf the panel. viz., = go. 
and qli = qo. 

3.4.3 lsclated Thin Body Steady Lifting Problem 

As noted in section 3 . 3 2 2 ,  tlic solution to the isolatcd thin hody steady lifting 
probleni is cspressed in tsrnis o f a  vorticity distribution on the mean surfacr o f  the thin 
hody as follows: 
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where the vorticity distribution is required to satisfy the integral equation given by equation 
(3.3-1 8). An approximate solution is constructed in the FLEXSTAB system by subdividing 
the surface of integration into the panels of area S\Vli, equation (3.4-1 1, and by assuming 
each panel to have a uniform distribution of vorticity end a trailing vortex sheet, figure 
(3.443). The uniform vorticity distribution on the ith panel is expressed as 

(3.450) 

V where Sw~i  is the strength of thy uniform distribution. An approximate solution to the 
problem is then expressed by writing equation (3.3-1 6) as follows: 

%I i (3.4-5 1 ) 

Streamire panel edges 

Trailing vortex 

Panel control point 

Trailing vortex 

Trailing vortex sheet 

FIGURE 3.4-13.-PANEL WITH UNIFORM VORTICITY DISTRIBUTION 
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Equation (3.1-18). the integral equation which the velocity potential induced by the 
vorticity distribution must satisfy. is expressed in terms of the panel vorticity distributions 

V where wwl i; given by the boundary condition 

and 

V Evaluating tlie influence functions ~ \ ~ , ~ ~ ( X I . Y I . Z I )  at  tlie control points of the panels on tlir 
thin body mean surface leads to  

(3.4-53) 

wiirrc w& is the nondimensioiiai component of selocity normal to tlie mean suriacc at ttie 
jtll control point. Equation (3.4-53) is c\;pressed in niatris ;'orrii as follows: 

.4 second niatris csprcssion is obtainal by evaluating tlic boundary conditions. equation 
13.4-52), at the panel ccntroids. Thc vortcs panel strcngtlis rcquirctl to satisfy the 
boundaq conditions a t  tlie piincl ccntruids arc tlicn iound as 

(3.4-55) 
A a PI 

+ erei-?? a /II 



Equation (3.455) is used IS a basis for writing a single matrix equation for an entire 
aircraft configuration having N thin bodies as follows: 

where 

I- 

(3.4-56) 



-?.4.3.1 lsohted thin body steady lijling irtterference flow incidence. - As in section 
3.4.2.1, the interference flow incidence induced by steady lift on an isolated thin body is 
computed using the formula given by equation (3.412) expressed in terms of vdocity 
components. equation (3.4-10), computed from the solution to the ixh ted  thin body 
steady lifting problem, equation (3.4-51 ). These velocity components are giveii by 

and 

where 

(3.457) 

Evaluating the velocity components at tlis control points, using the method of section 
3.4.1.5. and substituting into quat ion (3.4-1 2). leads to the interference tlow incidence on 
the Kth thin body mean surface as 

SV S v 
= "WK,WIki WIi 'Wi<>. i= 1 

and on the J th  slender body mean surface as 

where the ini!uence coefficients are givcn by 

V V 
a WK,WIki= - v WIi sin(8Kk-81i) 

V 
K k - w  cos ( 0  - 

w~~ i 

(3.4-58) 

(3.4-59) 
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and 

(3.461) 

When evaluated at the control points on all mean surfaces of a configuration and 
expressed for the steady lift on N thir. bodies of a configuration, equations (3.4-58) and 
(3.4-59) lead to the following matrix expression: 

where the interference flow incidence matrix is defined as 

the aerodynamic influence coefficient matrix is defined as 

CagW,W1 V 
I [aiM, WN I C a BM , wi 

V 

. 0 . 0 . . 
" I  V 

[aWN ,w13 ["WE, WN 

(3.462) 

(3.4-63 i 

(3 .464)  
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and the vorticity distribution strength matrix is defined as 

~ -_ 

3.4 3.2 Isolated tliiii body stead!. lifting prcmirr. -The acro2ynamic pressure induced 
by the isolated thin body steady lift is given by equation (3.4-48), viz-, 

Cv (XI,YI,ZI) = -2 
pwI 

Introducing the approximations leading to  the solution to the thin body steady lifting 
problem given by equation (3.4-51 1, the induced pressure is found LF 

V 
(3.4-66) 

n1 v cv (X~,YI,ZI,) = - 2  c uwII(xI,YI'zI)swIi 
i=l pwI 

where 

'WIi 
The pressurc distribution wliich gives rise to lift  on the t h i n  hotly is  

ac; (X,,Y,) = c "  (X1,Y ,z = - 0) - CPbjI v (xI,YI'zI= + 0) 
I 1  WI ?WI 

(3.4-67) 



For the case of uniform vorticity on the panels of a thin body, tne lifting pressrues on the 
panels are given by 

where the lifting przssures are defined as 

(3.4-69) 

(3.4-70) 

with 

{c" 1 
p\*i I 

V and ACpw,i being the lifting pressure coefficient for the ith panel of the Ith thin body-a 
uniform value of equation (3.4-67) for points on the ith panel. 'The matrix of pressure 
influence coefficients [ C P M W , ~ ]  i- simply a diagonal matrix with the factor (2)  on the 
diagonal, Le., 

V 

The matrix of panel vorticity strengths 1s;; is defined by cquation (3.465). 

3.4.3.3 Isolatcd thbi hodj, stcadv lift itidiccwl i~c~loc i t~-  cottrponctits. In the 
FLEXSTAB sys t e r  the nondiiiiensional vclocity components appearing i n  equations 
(3.4-57) and (3.4-67) are evaluatcd x i n g  c.qu.t!io,is ( 3 6 )  through (3 .1)  o f  rctcrenc: .:-8. 'Jhc 
espressions fur the velocity components a r t  rlcrivcd i;: rcfertncc 3-8 i n  tcrnis o t  intcqals 
ovci' semi-infinitc triangular regions liaving 0 1  igins ;It CLIL'II o f  tlir four Iuncl corners, I'igurc 
3.4-5. Denoting the valuc of tlic potential inductd hy tlic vorticity on t l ic  k t l l  sL>nii-infiiiitc 
triangular region 3s @(,.,), the potential indticcd hy 3 panel of vortic'ity is oh ta ind  l q .  V 
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suyriniposing th? poteptials induced by the four semi-iniini' ! triangular regions. The 
formula representmg the potential induced by the ith panel on the Ith thin body is as 
follows: 

\.' where. for example, Qpr1;(2) is the potential induced by the semi-infinite triangular region 
shown by the shaded rt:$on in figure 3.4-1 4. 

ith panel of Ith thin body 

FIGURE 3.4- 14.-TYPICAL SEMI-INFINITE REGION W I ;  t i  ORIGIN 
AT A PANEL CORNER POINT 

 lit. nondimcnsiona~ velocity components inctuccd 13y tlic k'll scmi-infinitc trianptltar 

LLnipiiicd tor a vorticity strength of  ( + I  ) ;tiid ;ire 

region are given by reference. 3-8 for a unitorni vorticity strength equal to ( - 1  i 2 ) .  I n  tlic 
FLEXSTAB system these quantities 

( F 3  + F q )  V - K  - + -  given by 
'WIi(k) 7 



where 

F1 = R.P.(log S + d  j 
2 I I - M  ir 

3 F3 = R.P.itan -1 v ~ l - M ~ l z ,  gd 

and 

K = 0.5 f o r  M < 1  

= 1.0 for ~ > 1  

d’  5 \r(c*)2+(?-M2)(T’)2 

L tan A 
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while E,q.{ are the coonlinates of  the point where th? velocity components are eval?latd 
d a t i v e  to  the origh of the semi-intinire triangular regon. 

3.4.4 Iso!ated Slender Body Thickness Problem 

As shown in section 3.3.2.3. the solution to :he isolated slender body thickness 
problem is expressed in tentis of a 
slender body. Le., 

Line source distribution on the mean centerline of  the 

n(X;)KS(XJ,YJ,Z J;X;)dX; 

LBJ 
where the source distribution is required to  satisfy the i n t e p i  equation given by equation 
(3-3-21 ). An appmximate solution is constrwted in FLEXSTAB by subdividing the line of  
integration into xgm,onts o f  length LBJj. Equation (3.4-3). assigning source distributions for 
the segments. and carryhg out the indicated integations. The specifiL details of  these 
operations differ for subsonic and F ipersonic flow. and these two exes are treated 
separately in the following. 

Subsonic Cuse: IC subsonic flow a uniform source distribution is assumed for the 
centerline se_ments which for the jth segment of the J th  slender body me2!7 centerline is 
cspressed as 

(3.472) 

where S& is the strenFth of the uniform distribution. 1 he approsimatc solution is oblaiaed 
by w d i n g  equation (3.3-21 ) as 

l'he indicated integrations imply the followitig velocity components: 

and 



The velocity components are tvaluated at control points on the surface of the 
equivalent slender bcdy of evolution located at the midpoints of the line segments. figure 
3-44 5,  with the values at the ith control point denoted as 

cs 
V 

r B J  , B J i j  
(3.475) 

Equation (3.472) evaluated at tht ItC? control point becomes 

. . scs ,dR( Ji) (3.4-76) 
fiJ fiJ 

%f j=  uBJ,&J1, BJj  dXJ 
c vcs 
j=1 r B J , B J i j  3 =1 

where a(dR/dXJ)(Ji) denotcs the value of the slender body thickness slope at the ith control 
point. The required strengths of the source distributions are then expressed in matrix form 
as 

where 

CSI 
and ISM is the matrix of required source distribution strengths. Tht solution to the 
problem is expressed by writing equation (3.2-30) as 

(3.478) 

where 
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FIGURE 94 15.-SUBSONIC SLENDER BOD Y THICKNESS 
PROBLEM CONTROL POINT LOCATIONS 

Supemonic Ca#: In supersonic flow the source distributions have a linear dependence 
on the local cemtcriine segmefit coordinates €jj shown by figure 3.44. The line source for 
the ja segment of the Jth slender body originates at the pc . L XjtO). The origin Xjj(0) is 
determined such that the Ma& cone from the origin Xj+O) passes through the control point 
for the 0' - I)* slender body segriisnt. Each line source distribution extends to the tail of 
the slender body at  €jj(T). This arrangrement IS illustrated in figure 3;4-16 and is used for 
all source distributions except the one which is most forward. This source distribution 
originates at the slender body nose and varies linearly in strength to  the tail. The source 
distribution on the slender body centerline is therefore the result of superpositicning 
distributions of the form. 

Ls for o ~ ~ ~ ~ ~ s ~ ~ ( T I  (3.479) 
'Jj 'BJj 

Control point for 

.th line source distribution I 

FIGURE 3.4- 16.-SLEFlDER BODY ISOLATED THICKNESS 
PROBLEM CONTROL POINT LOCATIONS 



The velocity components appearing hi equation (3.4-74) in the case of suprsonic flow 
are given by 

(3.480) 

and 

The strengt5s of the source distributions ISHI are obtained from equation 13-4-77). with 
the matrix {BSCj I expressed in terms of the velocity components given by equation 
(3.480)- Finally, the solution to the problem is expressed by writing equation (3.2-20) as 

(3.4-8 I ) 

where 

3.4.4. I LwGated slender body rhickttess iiirurfermce flow irtcidertce. -The inter fcrence 
flow iwidencr: induced by thickness of a slender body is computed using equation (3.4-13) 
expressed in terms of velocity components, equation (3.4-1 1)- These are computed from the 
solution to  the slender body thickness problem given by equation (3.4-78) in subsonis flow 
and by equatior: (3.4-81 ) in supersonic flow. These velocity components are giver? by 

(3.482) 
and 

3- I03 



S cs where Smj refers to Swj for subsonic flow and to Sm, Ls for supersonic flow, while 

Evaluating the velocity componeqts at the control points using the method of section 
3.4.1 -5 and substituting into equation (3.4-1 3) yields the interference flow on the Ith thin 
body mean surface as 

(3.484) SS s -  lJ s 
'WIi -.' 3 =1 %I,BJij BJj 

and on the. Kth slender body mean surface as 

SS s -  IJ s 
- ' aBK,BJkj BJj l B K k  j=1 

(3.485) 

where the influence coefficients are given by 

and 

f V  sin(8Kk-8(Jj 1 )  S 
EX, BJkj r BK , B Jkj 

a 

When evaluated at the control points on all mean surfaces of a configuration and 
expressed for the thickness of M slender bodies of a conr'lguration. equations (3.4-84) and 
(3.4-85) lead to the following matrix expression: 

(3.4-87) 
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where the interference flow is described by the matrix 

the aerodynamic influence coefficient matrix is defined as 

'%N, B1 =-  
and the source distribution strength matrix is defined as 

(3.488) 

(3.489) 

(3.490) 

3.4.4.2 lsoluird slc.nder hodv thickness prcwi:rc*. -1lie aerodynamic prcssurc indriccd 
by the thickness of an isolatcd slender body is computed on the hasis of q u a t i o n  (3 .349) .  
Substituting into cquation (3.349).  tiic solution for tile ~ t ' 1  slender I>olly. cquation I 3.4-781 
in suhsonic tlow or equation (3.4-81 ) in supersonic tlow. Icacls to the pressure tlistrihutioii 
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S where the nondimensional velocity component U B J ~  is given by equation (3.4-74) in 
subsonic flow and by equation (3.4-80) in supersonic flow. This pressure distribution, 
evaluated on the surface of the slender body, is symmetric about the slender body centerline. 
The values of the pressure on the slender body surface arc computed at points midway 
between the ends of each centerline FeExnt, figure 3.4-2. For the kth segment the pressures 
a t  the points of evaluation are given by 

SS Id s - CS - - * ' 'BJ,BJkj BJj PBJk j=1 
(3.492) 

S where UBJ,BJkj is the X-mmponent of nondimensional velocity at the kth segment due to  
the source distribution on the jth segment. When expressed for all slender body line 
segments, equation (3.492) is expressed in matrix form as 

(3.493) 

I SI where ,SB, is as defined by equation (3.4-90). while the pressure coefficient values at 
cenierline segment midpoints are given by 

S 
- J  

c c S  }is0 = - 
pB 

and thc pressure influence coefficients, Le., the quantities - 2 u g ~  B J ~ - .  arc espresxd in a 
matrix as 

(3.4-94) 

S I C CPMB , g I 
(3 .405)  
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3.4.4.3 Isolated slender body tkickt;ess induced velocirr, components. -The computa- 
tions for isolated slender body thickness interference flow incidence and pressure require 
the following velocity components: 

due to a uniform distribution of line source in subsonic flow on the jth 4; 1 
cen terline segrnen t 

cs I V 
‘BJj 

due to a linearly varying distribution of line sources in supersonic flow 
extending aft as shown by figure 3.4-1 7 LS 

‘BJj 
V 

Subsonic Case: The velocity potentisl induced by the line source distributed on the kth 
segment is given by 

cs = - - J  1 LBJk d c i k  (3.496) 
R ‘BJk 4a 0 

where 

and 

Mach cone from origin of kth line source -f 
ach cone from tail 

FIGURE 3.4-I7.-REGION,C ‘ . J R  EVALUATING SUPERSONIC LINE SOURCES 
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Letting 

and 

then 

The components o f  velocity induced by the line source are found as follows: 

""BJk 1 1 -l 

(3.497) 

(3.498) 

V cs = o  (3.4-93) 
'BJk 

Sirpersonic Case: The velocity potential induced hy tlie ktll  line source is given by 

(3.4-100) 

0 

where 



The first upper limit is applied to region 11, figure (3.4-17). and the second to region 
111. Letting 4-a = cosh u as a change of variable, the integratioii is readily camed out to find 
the velocity potential for regions 11 and 111 of figure 3.4-17 as follows: 

For region 11 

(3.4-1 01 ) 

and for region 111 

-1(S-LtX(O)), (3.4- 102) 
1 Ls = - v<c-L+X(C))2- a2 - F,cosh 4FJk  25r a 

The nondimensional velocity componetits induced by the kth line source in regions 11 
and 111 are given by the following formulas obtained by differentiating the velocity 
potential, equations (3.4101) and (3.4102). 

For region 11 

LS 
rBJk 

V 

v Ls = 0 
‘EJk 

(3.4- 1 03) 
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and for region III 

L - X(0) - - -  
-L +X ( o ) ) ~ -  a2  

LS - 
B Jk 2n U 

(‘Jk BJ Jk 

+ 

V Ls = 0 
‘BJk 

(3.4-104) 

3.4.5 Isolated Slender Body Steady Lifting Problem 

The isolated slender body steady lifting problem is posed in section 3.3.2.4. where the 
solution is represented by the potentials induced by two line doublet distributions, ;.iz., 

and 

Z Y where the line daublet distribution strengths po (XI) and p, tX,) are uetermined by the 
intzgral equations given by equations (3.3-27) and (3.3-28). 

An approximate solution is developed in this section following an approach similar to 
that used in constructing an approximate solution to the isolated slender body thickness 
probiem in section 3.4.4. The slender body mean centcrlinc is subdivided into segments 
identical to those shown by figures 3.41 5 and 3.4-16. Co;itroi points arc located relative to 
the ends ot the centerline segments for the cases of subs mic and supcrwnic flow shown by 
thcse figures, hut there are two control points for each segment as slioH 11 b y  figure 3.4-1 E. 
This arrangement forms two sets of control points--one used to dctcmiinc the distrihi:iion 

3-1 IO 



strciigtli p z  a:id tile ot1it.r t o  dctcrr?iine tlie distribution strength pOy -tliose controlling the 
Z-clouhlcts ;ire :ilong tlie ineridian linc at  0 = 90". while tlinsc controlling tlie Y-doublets are 
along the meridian line at  0 = 180". 

7 z doublet control points 

4 
XJ 

y doublet cor*rol points 

FIGURE 3.4- 18.-LINE DOUBLET CONTROL POINT LOCATIONS 

The potentials for tlie unit doublets appearing in equations (3 .3-23)  and (3.3-24) arc 
foulid from the potential for a unit source as follows: 

and 

wliere 0 is the circumferential coordinate shown in figure 3.4-18. To make the following 
development more compact, these equations are combined into tlie single expression 

(3.4105) 

\?'liere the tipper and lower quantititt~ in the brackets arc taken tu be in correspondence. Tl~i, 
notation leads to the integral equatioiib ( 3 . 3 - 1 3 )  and 33-24]  expprcswd I y  1111. single 
equation 



Y 
The line doublet distribution strengths dz are expressed in terms of the mean 

cv>terline segments such thut 

CP represents a distribution associated with the jti: Jegment and S B J ~  is a constan' which 
determines the magnitude of the distribution strength. The functions 

are defined differently for the two case: of subsorx and supersonic flo !.. . 

Subsonic Case: In subsonic flow the line doublets are distribated as quadratic splines, 
figure 3.4-1 9. Esch of the quadratic splines spans tliree segments of the centerline cominenc- 
ing cne segment le;:qth forward of the actual nose of the slender body. T!ie distribution 
dsscciated with the jl> segment therefore spans the ( j - I  )th segment and the Cj+l srgi-ieiit 
as well, and 1. ?.s the following form: 

(3.4-1 07) 

for -L3 J j  rS113 

where 



Srtpersonic Grre: In supersonic Taw a line doublet extends aft from the point of 
Litersection of the body centerline with the Mach fore cone from a control point, figure 
3-41 ti. 'Ihe strengths of t ime line doublets are quadratic in the #;j Goordinates shown by 
Figure 3.4-1 6, and are expre. -ti as 

Each lint' doublet extends from tJj = 0 to  EJj = #J~(T), tB.':iere tJjfT) is the coordinate of the 
body tail shown by figure 3-4-16. 

Srlbstituting the dis9ibution strengths, Le., either equation (3.4-1 07) or  equation 
(3.4-108). into the expression for the velocity potential, equaticn (3.4-106), and carrying 
out the integration over the lengths of the distributions leads !c the velocity potential 
expressed as 

(3.41 09) 



nK intm equations whicb must be solved. equations (3.3-27) and (3.3-28). arc now 
expmsd as 

where 

and 

n lJ ZD *ZD ' "BJj' BJj j= l  

ZD YD Evaiuating the velocity components wmj and v a ~ j  3t the control points as 

?D 
W i 3 J B J i j  

- -  
as well BC the Functions, V, W, ~ I J / ~ X J ,  and aGj/aXj leads to the follgwing matrix 
expressions 

.- 
a- 

and 

(3.4-1 10) 

(3.4-1 1 I )  

(3.4-1 12) 

(3.41 13) 

(3 4-1 14) 

The matrix expressions given by equations (3.4-1 14) are solved by inverting the influence 
c:r>efficirnt matrices to determine the doublet distribution strengths. 
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The solutions to equations (3.4-1 14) arc combined into a single matrix equation for an 
aircraft conf+tic.n having M slender bodies. This com5ined equation is written as 
fouows: 

(3.4-1 IS) 

€RBI E 

CS,} u 

- 
m ,-I 

[“B~,BI .  . 

’ 

- 

(3.4-1 16) 

zeros 
* m  YD 1-1 

Cam, BM ZD 3 - 1  
Cagi,~i 

(3.41 17) 

(3.41 18) 

and 
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3.4.5.1 I d i z t d  slender M y  steady lift interfucncc j low incidence. -The inter- 
ference f b w  incidence induced by the steady lift of an isolated slender body is compcted 
using the formula given by equation (3.4-1 3) with the velocity components, equations 
(3.4-1 I) ,  computed from the solution to  the isolated slender body steady lifting problem, 
equation (3.4-109). These velocity components are given by 

Y Y Y 

B J  j=1 BJj 

(Z)D 1J ( Z ) D  ( Z ) D  
r = c vr 'BJj V 

(3.4-1 19) 
and 

where the quantities d;! are the doublet distribution strengths given by equation (3.4-1 IS) 
and 

U 

Y 
( 9 )  

(3.4-1 20) 

These velocity companents are evaluated at the control points of all mean surface panels of 
a configuration except for the panels Dn the interference surface of the Jth slender body. 
This evaluation is carried out using the method of section 3.4.1.5. Substituting the results 
into equation (3.4-13) yields the interference flow incidence on the Ith thin body mean 
surface as 

(3.4-121) 
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and on the Kth slender body mean surface as 

= C  a B K , B J k j S B Z j  for K f J  
j=1 'BKk 

= o for K=J 

where the influence coefficients are given by 

(Z)D Y (;I 

( Z ) D  Y 

= v  sin <eIi - B ( J j )  %I, B J i j  rWI , B J i j  

cos (eIi - B C J j ) )  BWI, B J i j  - - v  

and 

aBK, B 3 K j  = v  r B K ,  B J k j  sin (9, - e ( J j ; )  

(3.4-1 22) 

(3.4-1 23) 

The interference flow given by equations (3.4-1 21 and (3.4-1 22) is esplvssed in 

Caiv,B3{si} (3.4-1 35) 
matrix form as follows: 

where the interference flow is described by the matrix 

int = - 
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The kfluence mfl ic ient  matrix is given by 
- CaBl,B13*** YD zeros 

(3. 
ze:os 

0 
0 

I 0 
0 

0 

and the doublet di 

I-127) 

- 
>bution strengths are given by the matrix 

(3.4-1 28) 

3.4.5.3 lsulated derider body steady liftittg prcsmre. -The aerodynamic pressure 
induced by steady lift of an isolated slenctci body is computed on the basis of equations 
(3.3-50) and (3.3-51 )- Substituting -nto equations (3.3-50) and (3.3-51 ). the solution for the 
Jth slender body, equation (3.4-109). leads to  the pressure distributions 

acd 
(3.4-1 29) 
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ZD YD where the nondimensional velocities U B J ~  and u a j  are as follows: 

(3.4130) 

The pressure distributions given by equations (3.4.1 29) vary as sine and cosine functions 
of the circumferential coordinate 8 shown by figure 3-4-20. The pressure is evaluated at the 
poLds used as control points in the subsonic form of the problem, figures 3.4-1 5 and 3.41 8, 
leading to 

and 

urn YD E J  
B J ,  B J i j  ' B J j  cyD = -2I: 

' B J i  j=l 

These results are incorporated into the following matrix equation: 

t Jji 

(3.41 32) 

(3.4-1 33) 

Point or evaluation I 
for Z-doublet 

Point of evaluation 4% .>-. 
for Ydoublet 

- Lircumferential variatiol. af pressure 
for 2-doublet 

FIGURE 3.4-20.-SINE FUNG'TION VARIATION OF Cp ON A SLENDER BODY SURFACE 



where I ,SB DI I is as defined by equation (3.4-128). while the pressure coefficients at the 

surface points are given by 
L 

{cD 1 
'B1 

8 

ICYD 1 
'BM - - - -  {CD 1 E 

pB ZD 
{ c  1 

'B1 

8 

ZD 
{ c  1 

'BM 
L 

and the pressure influence coefficients are expressed i 

8 
w 

0 

I 
zeros I 

I 
I 
I 
I 

zeros [ - 2 u ~ ~ , ~ ~  YD 3 I I 

(3.4- 1 34) 

matrix form as 
(3.4-1 35) 

zeros 

zeros 
zeros I 

I 
I 
I 
I 

0 
0 

zc 3 
zeros C - 2 u ~ ~ , ~ ~  

3.4.5.3 Isolcted slender body stead-v lif; itidicced velocity coniptmvits. -The 
computations for isolated slender body steady lift interference flow and pressurc require the 
fdlowing velocity components: 

ZD 
U ~ ~ :  

ZD 
B J j  

V r 

7D 
B J j  

v 

YD 
B J j  U 

YD 
B J j  

V r 

. .  YD 
" e ~ , ~ j  

f3.4-I 36) 
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As noted in the preceding, these velocity components are computed from the velocity 
potentials 

and these potentials are computed from the potential for a line saurce as 

and (3.41 37) 

The computations differ for subsonic and supersonic flow, as destxibed in the following. 

Subsonic Cae: In subsonic tlow the velody components are derived from the 
following potedial for a line source of quadratic strength variation distributed on the line 
OGLGL: 

0 

where 

and 

Carrying out the indicatd intcgration leads to 

(3.4-1 38) 
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The differentiation indicated by equations (3.4-137) leads to the potentiah for line doublets 
of quadratic strength variatior. on the line 0 Q Q L as 

(3.4-1 40 j 
-F C2X,1 + a 2 s i n h - l  7 'n -1 

a 

Introducing the following dehitions for three quadratic distributions: 

Y CZ)D 
Y 

- C Z ) D  
Ojtl = @L for L = LBJjtl and E =  E J j  - LBJj 

the potentials due to a quadratic spline distribution of line doublets about the jtll slender 
body mean centerline segment, figure 3.419, are constructed as 

where the coefficients aj and bj are given by the formulas 
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and 

The velocity components, equation (3.4-1 36). for ajmputing the flow incidence ant! 
pressure induced by the quadratic spline line doublets are found by differentiating the 
potential, equation (3.4-14 I ). as follows: 

Y ( Z ) D  Y 
(zID a 

(3.4142) 
= -(+ a r  BJj EJ j % 

These operations lead to the desired velocity components given by the following formulas: 
V 

. 
t c 2 X n l  + T ( 4 5 - 3 X  1 1 + 2sinh n a n 

where, a g a i n ,  

(3.4- I 43) 

Evaluating these velocity components at tlic acrodynamic control points leads 13 t h :  values 
of the quantities apptwing in tile matrices dcfincd hy equations (3.3-1 17). (3.4-1 27 ), and 
t3 4-135). 



Supersonic Case: The vzlocity potentials lor the supersonic h e  doublets are derived, as 
in the subsonic case, by differentiating ; it: velocity potential for a source having the sanie 
strength variation, viz., 

where 

and the f i t  upper limit applies to  region 11, figure 3.4-17, and the second to region Ill.  The 
indicated integration is more readily carried out by writing the potential as follows: 

where for region I1 

(3.4-1 15) 
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and for region 111 L-X( 0 1 

L-X(0 1 

As in the case of supersonic line sources, a cl.ange of variable is introduced as 

(3.4-1 46; 

The integldtio.,s then follow readily to obtain in region 11 

and in region i I I 

(3.4-147) 
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OP substituting equations (3.4-146) and (3.4-147) intla equation (3.4-145), the supersonic 
fine source pwentlal is fmnd for region I1 as: 

(3.4-! 48) and tor region 111 as: 

where 

The velocity potentials for the line doublets arc obtained from the line source pcteiitial 
as 

(3.4149) 

Carrying out this operation yields dosblet potentials for region I1 as: 

and for region 111 as: 

X 
+ a cosh - L!!) a 
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The required velocity components, equation !3.4-136). are now found by carrying out 
the following operations on the supersonic doublet potentials. equations (3.4-1 50) and 
(3.4-1 5 1 1: 

The velocity components for w f ~  
to hz 

- mmnutd frotr: equation (3.4-1 50) and are found 

(3.41 53) 



For @on I11 the vekrcity components arc found to be given by the following: 

(3.41 54) 

2 

n = l  n 
V 
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3.4.6 Steady Aerodynamic induction Problem 

3.4-61 Steady aedynatnic indictioti pjretitial. - As shown by section 3.3.2.5. the 
solution t o  the steady aerodynamic induction problem is expressed in tenns of vorticity 
distributed on the mean surfaclfs I dl thin and dctlder bodies comprising 3n aircraft 
con figuration. Le.. 

V int V 4 ( x , y , t )  = 1'1 Yo ( C , r l , C ) K  (x,y,z;S,c,<)dS 
'W 'B 

where ~ t t  is a solution tcr the integral equation 

wherein qint is the interference flow incidenlv found from the solution to one o f  the 
precuding isolated body problem. The solution to  the steady aerodynamic indwticn 
problem. equation (3.3-29). is expressed in ternis of uniCorm distributions of :.orticity on 
the mean surfacc panels. equatior. (3 .650) .  as 

V V :i nI 

,-1 1=1 
V 4 ( x , y , z )  = I: 1 ~wIi(x,y,z)swIi 

T- - .  (3-41 56) 

13.4-1 57 ,  



where { rlr&)*t is the interference flow incidence at the vortex panels and is given by each 
of equations (3.4-28), (3.4-63\, (3.448)- and (3.4-126)- Le., the mterference flow incidewe 
induced by one of the preceding isolated body problems, The influence coefficient matrix is 
given by 

V where [abW wl is given by equatior. (3.4-64) and 

- - -  I - -  

Finally. the strengths of the vorticity distributions are given hy 

{SV ’ - BW’ - 

(3.4-1 58) 

(3.41 59) 

(3.4160) 

The strengths of the vorticity distributions are found by inverting the influence 
coefficient inatrix. ix . .  

(3.4-161) 

Substituting the values so obtained into ttquatior. (3.4-1 SO) yieltts the solution to ;he sttrrdy 
aerod y na rnic i nu’uc t ion proble rn. 

3.4.6.2 Sfcud). acDrcid~t!ontic. itidircrim prrssurc*. -- Tlic arrd  ynsnlic pressurt: induceti 
hy the aerodynamic induction problem wmtitutes tlic interferetic-c pressures intli:*xd hy tlic 
isolard b o d k  of the preceding sections when they nre coni!>ir,ed to furni a ~0~1f ig : i r~ i io t~ .  
This prcssure is compute4 hy siih\titutiiig thr: solutioi, to the problem, rc!tntinr! (3.5- 150 1. 
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into equation (3.3-52! Carrying out tha: operation and evaluating the pressure coefficient 
at the geometric Lxmtroid o f e s c h  mean surface panel leads to the following matrix 
expression: 

The matrix of prrssiic coefficients appearins in this expression is &yen by 

v cc, 1 = 
aw 

The pressure intlucnce coefficient iiatris is rriven h\- 

I .. 
il 

'W 
, {CF 1 = 

where 

(3.4-162) 

(3-4-1 64) 



3.4.7 Combined Steady Aerodynamic Problem 

The development to this point has produced all of the elements which are used in the 
FLEXSTAB system to represent steady aerodynamics. In this section these elements are 
combined to obtain the fmal matrix expressions used in the FLEX!XAB system to relate 
aerodynamic surface pressures to the flaw incidence described by the surface boundary 
conditions. 

-3.4.7. I Combined stmdj l@titig ae&ynamics.-The steady lifting pressure acting oil 
a configuration is the total af the isolated thin znd slender body lifting pressures. sections 
3.4 2.3 and 3.4.5.2, and the interference pressi.res. The total steady lifting pressure is 

(3.4165) 

I D1 I v I where lCpg1 is the iSOLdted slender body lifting pressure, equal 3n (3.4-1 33): lCpg 1 is the 
interference pressure on slender body mean surfaces, equation f - 4-1 63): and 
{ C&,} is the combined isolated and interference thin body lifting pmssire, equation (3.4-68). 
The strengths of the flow singularity distribution giving rise to the total pressure are 
erpressed as 

(3.4-166) 

w ere !S! represents the strengths of the line 3oublet distributions, equation (3 .4:  17): I!$ I the strengths of the vorticity distributions 011 slender body mean surfaces arising from 

strength from the isolated thin body lifting problem, equation (3.4-56). and those arising 
from interference flows, equation (3.41601. Finally, the lifting prcssurt. is given by 

interference tlows. equation (3.4-1 60); and I ,Sw, VI the sum of the vorticity distribution 

(3.4-1 67) 
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where 

~ 

wherein cCF!2LN,,l i s  d e f i n e d  by e q m t i o n  (3.4-164) w h i l e  

C C F M ~ ~ , ~ ~  D 5 

where . ICDPu,B1 D = C01 and CCPXD I=  [CC?YBJ,BJ 
B, B 

s i n c e  CCPMiI,BJI = L O ]  for  I f Z ,  e q u a t i o n  (3.4-135) 

TI1 relationship between tlie singularity strengths of equation (3.4-166) and the flow 
incideii i' at all cc i!rol points in the liftin_p problem is given by 

1"' 1 = CAIC]{S) 

where 

and 

(3.4-168) 



The aciodynamic influence cwtficienii are found by combining equations (3.4-1 67) and 
(3.4-168) as follows: 

IC,) = CLSCIEY' 1 (3.4-169) 

where 

Tie Interfenmce !low incidences must vanish at  the mean surfaces of slender bodies; thus, 
the flow incidence matrix{\ir'}is reduced by deletin the elemeqts (4';). Also, the columns 
of the matrix [ LSC] multiplying the elements of $!} are deleted from the (LSC] matrix. 
These operations lead to the combined lifting soldion expressed as 

where, from equations (3.4-56) and (3.4-1 IS), 
n n 

{Y 1 = - W X w E P )  -VAv{V) + {Y 

with 

and 

(3.4-1 7 1 

(3.4-172) 

Equation (3.4-1 71 1 yields quantities from which the entire lifting pressure on an aircraft 
confieitration is cktermincd from the steady part of thc flow incidence. Following thc iretliod 
of rcfcrcnce ( 1-1  A the thin body partition of equation (3.4-172) is ev;iluatcd for flow inci- 
dence a t  panel centroids even though cquation (3.4-108) is cvaluatcli Ibr tlow incidciicc ;it 
ths panel control points. This arrangcnicnt has been found cnipiricdly to yield a better 
approximation th;in whcii equation (3.4-1 71) is cvalu;itcd a t  panel corlirol points. 



3.4.7.2 Combined thickness aemdynomicx-The pressure induced by thin and slendc, 
body .thicknes is expressed in two parts-the pressure induced on the isolated bodies, 
sections 3.4.2.2 and 3.4.4.2, and the thickness interference pressure. The isolated thickness 

(3.4-1 73) 

where (C&} is given by equation (3.4-93) and (A} is given by equation (3.4-35). Tlie 
thickness interference pressure is found by substituting into the aerodynamic induction 
problem, ix. ,  

the interference flow incidence induced by thin and slender body thickness. equations (3.4-27) 
and (3.447). Le., 

S i n t  - CY,,) - [ T D S l f S S ~  

(3.4-1 75) 
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3.4.8 Isolated Thin Body Unsteady Lifting Problem 

In section 3.3.2.6 the solution to the isolated thin body unsteady lifting problem is 
expressed in terms of vorticity distributed on the thin body mean surface, equation (3.3-35). and 
the vorticity distribution is required to satisfy the integral equations giveii as equation 
(3.3-34). 'Ihe vorticity distribution yo is that determined in the steady form of the problem, 
section 3.4.3: and, L;ke the distribution ro, the distributions yl,-y2, and y3 which introduce 
the effects of unsteady flow are assumed to be uniform on each panel, vit., 

Having introduced these approximations, the unsteady velocity potential is given by 

where 

and the integral equation (3.3-34). in terrls of the influence functions introduced by 
equation (3.4-53), become as follows: 

dlld 

(3.41 77) 

3-1 36 



where is given by equation (3.3-36). 

Equations (3.4-1 77) are evaluated at the control points of the mean surface panels, and 
the results are expressed in matrix form as 

%iV 1 = CdWI,W13 V €SUI} v1 , u WI 

and 

V where the matrix rXwIJ contains the Xpmrdinates ~f the panel control points and the 
matrix [Jaw wI] is formed in the same manner as [agl,wIl, but the elements are the 
result of evaiiating 

V 

X, (3.4-1 79) 

at  the panel control points. The solution to the problem is constmcted by solving equations 

determined into equation (3.4-1 76). 
(3.4-178) for the values of I ,$,, V'' . 1 ,si,. v') and I v31 and substituting the values so 

The solutions to equations (3.4-1 75) are fmnulated for N thin bodies in a configura- 
tion and expressed in a single matris equation using the notation of equation (3.4-56) as 
follows: 

and 

(3.4-1 80) 
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Where 

zeros 

(3.4-1 81) 

with the panel control point coordinates expressed in the Keierence Axis System. 

3.43.1 Isolated thin body ur'tsteaay lifiinr: inier,';erence flow incidente.-Each of the 
vorticity distributions whose strength is determ*ncd by quatiofis (3.4- 180) induces an 
inisrference flow. Thew hterference flows a' the panel control pohts on the mean surfaces 
of all thin and slender bodies of a confeuration are obtained by setting up equations 
(3.4-1 80) and (3.41 8 I ) in the form which thLy have prior to solutitn. These equations are 
expressed in terms of the panels on all N thin and M slender bodies of a onfigsation and 
appear as fcltowr;: 

r 

(3.4i82) 

and 

Tl ic intcrfcrcii. c I;OW i nc idmx niay now be ohtclinctl hy Jc.terrnining *rid the 
requirt J ;!itcr!a-iicc. vorticity stwngths. 
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to represent the isolated thin body lift including interference efkcts. The operation is 
deferred, however, to section 3.4.10 whcre the efkcts of isolated slender body unsteady lift 
are also mciuded. 

3.4.8.2 Isohtea thin bodv unsteady llfhs preswre. -The aerodynamic presure 
induced by the isolated thin body unsteady lift is compute? on the basis of equation 
(3.3-53). Substituting the solution for the Ith thin body, equation (3.4-176), into equation 
(3.3-53) leads to  the pressure distribution expressed as 

where 

Etaluating the lifting pressure distribution. equation (3.446). at the s d a c t :  G f  the thin 
body results in the niatrix expression 

where the matrices !C&;! and I( P M ~ . w )  are given by equations ( 3  '-69) dnd (3.410, and 
rX,J contains the coordinates of the poi,its where the preaure is evaluated. ix., thc p2nt.l 
geometric ceii+mids. 

v 
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WI i s 

whei, ICv is the potential for an elementary horseshoe vortex (ref. 2-3, equation 5-35) and 
8; is the dihedral angle of the mean surface oanci where equation (3.4 : 85! is evaluated, 
&:noted as B;i in figure 5.4-3. 

Exprer,;ad in the local panel axis system fipre 3.4-5. the potential induced at the 
point t::,: due to an dementary horseshoe vortex 1.tith bound element at cG,t - 0 is fo; 
subsonil flow (p'lge 67 of rcferenc- ?-3): 

and for supersoriic .flow (page 87 of refereice 2-3): 

Equation (3.4-185) contains the quantities 

and 
%I i 

(3.4-1 88) 



which are obtained by oper,,,ng on the potentials given by equations (3-4-186) and 
(2.11 87). The pcteitthl~ art- h i  Jfiflerttntiatd with mpect to r) and { and then intqnted 
tmicu with mpct to C- In suirjUmc flow. onc of t l w  integrations is carried out using the 
Ieac!ing and trding edge cooniiratcs of tliz panel. tigttre 3.4-5. ;1s tht limits of the integra- 
tion. In the second integration tlw limits oitt € = --o and the zoordinate where the influence 
of i t . *  pans1 is e-:aIuatcd. In supersonic k w  the tint Iztzmtion is mmed out over only that 
portion of the . . .cl shich is mntamA in the Mach fore mne of the inIlur.nwd point-the 
p, t P showr: ; tipure 3.41 1 - Tiis panel is divided into two mons f I and I I  t as shown by 
tip;!. 3-4-21 md tltr limits of integration ehfr'nd only from the panel leading edge to the 
lin. 3f intersection ''Lbtween the panel and the Mach forc cone in region 11. 

Strhsorlic mw: In subsonic flow the above operations reduce tquations (3-4-1 88) to the 
following exprzssions which are evaluated by numerical intryration over the r) cwrdinatc: 

(3.4190) ' 3  

.Tcipc*r.it)rric CUSCY In supmonic !low the contributions to ihc quantities I ilk .y li and 

from regions I and I I  are oirtained I)!: numerical integration o f  tiis fol!oiving "\VIi 
prcssions : 



(3.4-192) 

Region 11: 

1 
2n 

t -  
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FIGURE 3.4-21.-REGIO.W OF INTEGRATION FOR VORTEX PANEL IN SUPERSONIC FLOW 



3.4.9 Isolated Slender Body Unsteady Lifting Roblem 

In section 3.3.2.7 the solution to  the isolated slender M y  unsteady lifting problem is 
expressed in terms of line doubles distributed on the slender body mean centerline. 
equdtions (3.3-39) and (3.341). and these line doublet distributions are reqiured to satisfy 
the integral equations given as equations (3.3-40) and (3.342). Letting line doublet 
distributions have the form introduced in section 3.1.5 for the two cases, subsonic or 
supersonic flow, the solution to  the present problem-equations (3.3-39) and (3.3-41 )-is 
approximated by the following expression: 

(3.41 95) 

ZD L J  ZD ZD M2 ZD Z D 1  ZD ZD2 
@ B J  - iz1'* B J j  ' B J j  '2 'J$ B J j  'l32j '@B.T j 'SJj ' - 

The integral equations, equations (3.340) and (3.341), which must be solved to 
determine the doublet distribution strengths. are expressed in terms of the influence 
coefficients given by equation (3.4-1 13) and appear as follows: 

(3.41 96) - 

D where the matrix [X,,l contains the XJ coordinates of the line doublet control points. The 
solution to the roblem is constructed by solving equations (3.4-196) for the values of 

'Dl YD2 'Dl , and SZD2and substituting the values so obtained into etqua1iJns 
(3.kl95). 'BJ- 'BJj .'BJj BJJ 

Equations (3.4-196) are expressed for M slender bodies of a contigimtion using the 
matrices introduced by equation (3.4-1 17). The result is as follows: 
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and 

where 

(3.4-197) 

(3.4-1 98) 

and the diagonal elements are the line doublet control point coordinates expressed in the 
Reference Axis System. 

3.4.9. I Isolored slcrder 5odj iritsrcadj. lifliiig iiircvfereiice jlow iiicideirce. - Each of 
the tine doublet distributions whose strength is determined by solving g u a t , m s  (3.4197) 
mduces interference flow incidence at the mean surfaces of the thin and sle*,der bodies of a 
configuration. Tlie interference flow incidence is evaluated at the contrc: points of rhe mean 
surface panels. The result is expressed in ternis of the intluence coeffkient matrix given by 
equation (3.4-1 27) 3s follows: 

(3.4- 1 99) 
and 

wlirre 
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3.4.9.2 IsoQted slender body unsteady liftitig pressure. - 1 Ire aerodynamic pressure 
induced by the isolated slender body unsteady lift is com uted on the basis of equations 
(3.3-54) and (3.3-55). Substituting the solution for the JtR slender body, equations (3.4-195). 
into thew equations leads to the pressure distribution expmsed as follow: 

YD SYD1 
“ J U B J j  B J j  

1 YD sM1) 
-U YD BJj B J j  + ‘ B J j  B J j  

(3.4-20 1 ) 

ZD SZD + M2 ZD S Z D l  
B J j  B J j  “ J U B J j  B J j  

zD =-2c {u 
‘FBJ j = l  

ZD SZD23 + L ZD SZD1) 
- U B J j  B J j  8~ ‘ B J j  B J j  

YD ZD where u i i  and u;: are given by equations (3.4-130) and (3.4-131 ) while #B,j and #B,j are 
given by equations (5.4-1 15) and (3.4-1 16) in subsonic flow and equivalent expressions in 
supersonic flow, see section 3.4.5. 

The unsteady pressure induced by the line doublets is evaluated at  points on the 
slender body surface exactly as in section 3.4.5.2 for the case of steady flow. The unsteady 
pressure induced at  these p i n t s  is expressed in terms of the matrices of section 3.4.5.2 as 

D 

c@B1B3 
YD 

Bl , B 1  

ze ros  

1 1 
* *  YD ze ros  

C * B M , B M  ZD 
[ + B I  ,BI 3 . I 
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and the matrices on the diagonal. Le.. 

and (3.4203) 

contain the surface point values of the potentials given by equation3 (3.4-1 IS) and (3.4-1 16) 
or their equivalents in supersonic flow. The matrix rX,l contains the X coordinates of the 
points where the ptrr;sure is evaluated in the Reference Axis System. 

D 

3-4- 9.3 Isolated slender body trrrrtady lift induced velocity components. -No 
addiiional velocity components beyond those used in constructing the solution to the 
steady flow problem, section 3.4.5, are required in this section; however. the values of the 
potentiab induced by the line doublets are needed to  compute the isolated slender body 
unsteady lifting pressures, section 3.4.9.2. As in the case of steady flow. section 3.4.5, the 
line doublets are distributed differently for subsonic and supersonic tlow. 

Subsonic case: In subsonic flow the potential due to  one component of the quadratic 
splines, figure 3-4-19, is given by equation (3.4140) and the potential for a spline found by 
superposition in the manner of equations (3.4-141 ), i.e., 

(3.4-204) 

Sirper.sorric ( I J . K ~ :  I n  supersonic tlow the potential induccd by tlic kth line doublct is 
gi,i\.cn by equation (3.4-1 5 1  in region 11. figure 3.4-17. and by equation (3.4-151 ) i n  region 111. 

3.4. I O  Unstcacly Aerodynamic Induction Proldcni 

J.4, IO. I 1 i i i s iwdJ .  .4cirodJwi!ric. Irrtlrrc~tictrr Poit , irfi t i l .  As :;hown b y  scction 3.3.2.8. 
the solution to tlie uiistcady ncrodynamic intluction prohlciii is csprcsscd in  tcrms of 
vorticity tlistrihiitctl on thc iticati surfxcs  of ;ill tliiri arid slcntlcr Iwdics comprising ;in 
aircraft conligur.ation. ix.. 
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'W+'B 
-w 

sW+sB 

- [I yintKvdsl 
3 

where the interference vorticity distributions are required to  satisfy the integral equations 
given by equations (3.344). Tile vorticity distributions on each mean surface panel are 
assumed to  be uniform as in the case of  the unsteady thin body lifting problem in section 
3.4.8; tho solution to the problem, equation (3.343). is expressed as 

The integral equations wliich must be solved. equations (3.3-34). are :xpressrd in terms 
of tile influence coefficients appearing in sections 3.4.6 and 3.4.8 3s follous: 

(3.4-206) 
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V 
where [lawB ,,,,I contrins elements obtained by evaluating the exprk ions  

J -m 

and 

at  the mean surface control points. 

The strengths of  the vorticity distributions are found as follows: 

(3.4-207) 

:‘inally, the solution to  the unstcad aerodynamic induction p-oblem is obtained by 
substituting the values o f  Swli, SBJ,. Swii, SBJj, S,vli and SBj; so determined into equation VI v r  v3 v2  v 3  \I 

(3.4-205 ). 

3.4.10.2 Unsteadv aerodvrranzic itrdirction pressirre. -The aerodynamic pressure 
induced by the unsteady aer.pdynamic induction problem constitutes the interference 
pressure induced by the unsteady isolated problems of sections 3.4.8 and 3.4.9. This 
pressure is computed by substituting the solution to the problem, equation (3.4-205), into 
equation (3.4-14). Carrying out  that operation and evaluating tlic pressure at the geometric 
centroids of ricli mean surface panel leads to the following matrix expression 

(3.4-208) 

3- I 49 



V where the matrices !CFvi int and (CPMWB,WB) are formulated as shown by 
equations (3.4-163) and (3.4-164) and the matrix IX;,J contains on its diagonal the 
coordinates of the panel area centroids expressed in the Reference Axis System. 

3.4.1 1 Combined Unsteady Aerodynamic Problem 

The preceding development provides all elements used in FLEXSTAB to represent 
unsteady aerodywxiics. In this section these elements are combined to obtain the final 
matrix expressions used in FLEXSTAB to  relate aerodynamic surface pressures to the 
unsteady tlow incidence described by the surface boundary conditions. 

The unsteady pressure acting on a configuration is the total of the isolated thin and 
slender body lifting pressures, sections 3.4.8.2 and 3.4.9.2, and the interference pressures. 
The combined pressure distribution is expressed in terms of equations (3.4-1651, (3.4-166), 
(3.4-167), (3.4-1 M), (3.4-202), and (3.4-208) and appears as follows: 

where 

the coordinates of the points where the pressure is evaluated, and 

(3.4-209) 

(3.4-21 I )  

The flow singularity sttengths appearing in equation !3.4-209) are given by equation 
(3.4-1 6 8 )  and thc following expressions 

(3.4-21 2 )  

(3.4-2 13) 
U -  
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and 

where [a] is given by equation (3.41691, 

COI ! C O l  I . C O I  
r - - -  - -  - - - -  

(3.4-215) 

V a 

Combining equations (3.4-209) through (3.4-2 15) leads to the solQtion to  the 
combined unsteady aerodynamic liftins problem as follows: 

(3.4-2 I 6 )  

Deleting the elements (i;} . from (6’ } and deletinp the corresponding 
columns from the [6LSC] matnx leads to  

where [SA] is the reduced form of [SLSC], Le., the columns of [SLSC] r n u l t i p l y i n g ( ~ ~ )  
are deleted. This reduction corresponds to the reduction of.[ LSCl to the steady aero- 
dynamic influence coefficients [ A] of equation (3.4-1 71 ). Also, the flow incidence a j  well 
as its rate of change follows from equation (3.4-1 72). 
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Equation (3.4-21 7) yields quantities from which the entire iriisteady lifting pressure on a n  
aircraft configuration is determined from the unsteady flow incidence imposed by the 
boundary conditions. 

The pitching wings, figures 3.2-10 and 3.2-1 I .  used in section 3.2.8 to  demonstrate the 
accuracy of the low-frequency approximation. are used here to  illustrate the application of 
equation (3.4-21 7). The geometries o f  the pitching wings are described in the form 

G(X,Y,Z)=O 

arid, expressed in the Fluid Axis System, appears as 

= G  i w t  f ( x , z , t )  = z-(.S-x)e 

The flow incidence at  the wing surface is found as 

w i w t  or '+ = C 1 - i C  .5-x)UIe 

and the rate of c h a n g  of flow incidence, to  first order in w/U, is found to  be 

1- . w  i w t  -y = 1- e U U 

Substituting the matrix equivalents o f  these equations into equation (3.4-21 7). a matrix of 
complex rressure coefficients is found as 

Separating into rezl and imaginary parts, 

Le., the lifting pressure coefficients for tlic win.: having plunging velocity, w = -U (chord 
lengths/second), and 

The first term of the imaginary part contains the lifting prcssurc cocfficicnts for thc Lviiip 
having a steady pitch rate 0 = U (radians per sccoiid ), atid :lit  sccond term contains thc 
lifting pressure coefficients for the wing liavirig ;I plunging ;I :cclcration <b = 41: (cliorb 
lengths/(second )-). 7 
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3.4.1 2 Leading Edge Thrust Correction 

The FLEXSTAB system contains a correction to the drag force induced on lifting thin 
bodies. This is a leading edgc thrust correction analogous to those usually encount rred in 
the theory of thin lifting surfacci, e.g., reference 3-9, pages 147-148 and 218-323. The 
correction accounts for the fact that the linear aerodynamic theory of section 3 is not valL 
in regions where the flow changes rapidly in the x-ciirection as near wing leading edges. The 
correction used in FLEXSTAB is demonstrated in 
aspect ratio flap plate a t  angle of  attack in a subsonic flow. The correction is then developed 
for the case of arbitrary thin lifting surfaces. 

: following for the case of an infinite 

3.4.12. I Lrctding edge tltnist of'a flat plate in subsonic ,'lorv.-The leading edge thrust 
correction contained in FLEXSTAB is illustrated by considering tiic pressurc distribution 
induced by subsonic flow over an hfinite aspeci rztio flat plate at  3ngk of  attack to  3 
subsonic flow. The leading edge thrust correction usually encountered in the theory of thin 
1iftir.g surfaces, references 2-3 and 3-9, is described and then th:: leading edge thrust 
correction used in FLEXSTAB is described showing the contrast with t I ; k  lifting surface 
theory. 

Figure 3 . 4 2 2  shows the lifting pressure distribution induced by the vorticity distribu- 
tion producing a flow satisfying the bnundary conditions of the flat plate, case 1 .  This 
vorticity distribution is given by the formula 

(3.4-2 19) 

and is seen to  become infinite in the region of the leading edge, ix., as x tends to zero. The 
lifting ' x r e  is given by 

A C p  E Cp -Cp 
I U  

(3.4-220) 

Integrating this pressure distribution over the surfacc j.iclds the following section lift  and 
drag coefficients: 
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The non-zero section drag coefficient is not consistent with inviscid flow theory and arises 
because the linear theory iaik in the -egbn of the leading edge where perturbations to the 
flow velocity are not small. Following. the method of refereniv 3-9(pages 147-148 and 
218-2231. a leading edge correction is computed which just balances the dng. vit.. 

This correction is computed by a .rmiting pacesr involving the infinite preslom at  the 
leading edge. 

In the FLEXSTAB system the lifting pressme giwn by equation (3.4-2-3)) is appwxi- 
mated by the step function shown as c .  2 in f i  3.422. The lifting presswe is finite at 
the leading edge so that the limitins proc- u illuded t o  above yields 3 kading alp thrust of 
zero. The leading edge thrust ccnvction ir. the FLEXSCAB qs tem is a geometric shape 
comction. The downwashes i n d u d  at th: flat plate by tlw two vorticity distrihittiuns. is.. 
casa 1 and 1. are shown by figure 3-4-23. -,-he downwash cmmputed by FLEXSTAB satisfks 
the houndary conditions at only 1 finite nilinher of points: hence. the FLEXSTAB solution 
yields a surface which approximates the b u i d a r y  cmndition surfaw-the flat plate in this 
case. If the lifting presure shown by case 2 of fipre 3-4-22 is applied tu tlle suri'ce 
obtained by integrating the downwash with nspect t o  x, the FLEXST.4B solution will yield 
lift and drag Lmes Lmnsistent with the hound.~ry condition surface approximation. In this 
computation. the section drdg for the infinite .spec3 ratio flat plate is found to  be zero. The 
surface found by intreating the downwash. hewever. as noted. is not that of the flit plate. 
and the FLEXSTAB leading edge thrust imrm'tion is a amvction from the surixv 
appearing in the houndary amlition (here. the n3t pI.ii..\ to the suriaw obtained by 
integrating the downwash. 

3.4. I 2 2  Sirrfice currec-riori UI rlrc Itwdiiig edge ImiicI. ~ If the downwash from the 
FLEXSTAB approuimate solution for the flat plate is integmrul. iipure 2-4-24 the suriace 
generated closely approsimates the flat plate except at the leadins rdge panel. l i  rlw J r q  is 
mmputcd m u m i n s  the ymxure to act on the llat platc. the balue ufscctim d n g  o!lt3ine;f 
is Cd = 6.1950 nearly the m1ue 2r obtained from rywtion 43 .+220). If rhc pn%urc is 
asswned to act on the inteprJted do\vnwasli surf;lce. the wction drag mlue Cot1lplitctl is 
CJ = 0. Cor1 .. ding 1l1e leading edge pnel shape leads to an approsiniation yielding <;f = 
-0.0633. This approsirnation is accepted for the FLEXSTAB system. and the liiting 
pressure is rissurned to act on the houndary condition surface in all a r e s  escept 31 the 
leading edge panel wliere it is assumed to act on the surfam ohtaincd hy intrgrating the 
dtvn\va\h. 
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the leading edge paneb is assumed to act at the d a c e  gnerated by integrating the flaw 
incidence: i t  the remainder of the thin W y  the lifting presw is assumed at the actual 
memr c b . ~  t cr d a c e  of the thin body. 

Tb incidence pemxated by the flow singddties of the itcnnikmamic representation 
cwtaiir  iacidence arising from motion of the W y  Axis System wrhtiw to the Fluid Axis 
Systzm. 
Imstnmi .  b not included in the surface shape generation. 

22.3: this incidence. dcscriing a change in direction of the apparent 

<LW~;- X m l i  we the morrtinatcs of the panel kading and trailing ed-a along 
the pand row centroid. f i  3.4-6 

b the compolrerit of pcrturhation \vlor$ty almg the (normal) 
rmoniimtc. figure 3-4-3 

is the normal component of perturbation \-elosity due to motion 
of the Body Axis System e h t i w  to  the Fluid Axis Syacm. 

W b .  

v 
hwW; i 
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FIGURE 34-25.-THIN BODY LEADING EDGE PANEL GEOMETRY 

A matrix of integrated flow incidences is formed as 
{wv 'z = CIDMl{Si) 

where I W  (3-4-222) 
 IDXI XI E 1- Jc aWTj v ( ~ . ~ ~ ~ , ~ ~ ~ ) c i ~ 3  

W I i  
where &, represents the vortex panel singularity strengths at thin bodies. Riis matrix is 
wrnbined with partitions o f  zeros to cmnfonn with the solution to the combined steady 
lifting problem. section 3.4.7, equation (3-4-1681. TIUS operation leads to the expression 

I VI 

f x T }  - = Cis2?3{~') 

3.4-223 ) 

The matris [ ISC I I is reduced t o  the riiitris [ ISC0 I eliniinatiny the columns multiplying 
{ $i 1 containeYin {I$') but not in { 9 1. c.L. cquation (3-4-21 8). Using this result. the 
leading cdse panel force per unit psncl span is f o i i ~ ~ d  as follows 



3.4.13 Aerodynamic Effects of Speed Variations 

As s!;own in section 2.3.3.4, an aircraft is subjected to  a variation in Mach number at 
its surface when it undergoes a change in forward speed or undergoes a pitch or yaw rate, 

- -  
where Y, 2 are the coordinates of a surface point relative to the aircraft center of mass. This 
variation in local Mac5 number produces a variation in aerodynamic surface prLzsure. The 
entire variation given by equation (2.3-74) is imposed on the isolated body thickness 
presstires, equation (3.4-1 7 3 ,  and leads to the following variation in tint pressure 
distribution: 

where AU is the change in forward speed and (Z}and { y )  arc column matrices of t l m  body 
panel centroid coordinates and siender body segment centroid coordinates-body measured 
relative to the center of mass in the Reference Axis System. The partial derivative of the 
pressure coefficients is computed by finite difference as 

following the approach of sections 3.4.3 and 3.4.4 evaluating all Mach number dependent 
quantities using the incremental Mach number M + AM. i.e., 

where the elements of 

(5.4226) 

(3.4- 228 
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IS0 
Fro;nequations(3.4-295) through (3.4-2.27) it follows that the partitions of (BC3ahl) 
are given by 

ana 

Also. from the thickness interference ielation. equatiotr (3.4-1 75). the increment to the 
interference flow incidence is found as 

In applying the Mach number variation formuk. Le., equation (2.3-74). to :he corllhined 
steady lifting problem and to the computation of thickness interference pressures, section 
3.4.7. the Mach number variations arising from pitch rite and yaw rate must be ignored. These 
computation cases involve influence coefficients which are derived assuming the free stream 
to be uniform, section 3.2.2. !. In this respwt they are iinlike the isolated thickness pressure 
which arises from local perturbations to the flow and Hhich may be computed on the basis 
of a local Mach number. The Mach number wriation leads to the following steady lifting 
pressure incremen ti 

aLcr, 2 Lr 
ACCP) = C*l{Y01 h" 

(3.4-23 2 )  

and 

whcrc 



and (C’ )int is computed on the basis of the interference flow incidencx of equation 
(3.4-*3RW M+AM 

The leading edge correction. section 3.4.12. is also a function of Mach number through 
terms involving the integrated flow incidence, equations (3.4-222) and (3.4-223). These two 
terms are evaluated at the incremented Mach number. M + AM. leading to 

(3.4-234) 

From the second of these the increment in leading edge correction is found from equation 

ac, ac, 1 

where 

a m e  
c- a M 1 E [EIsc,7,+,, - CISC,l,] 

(3.4-235) 
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3.4.14 Empirical Corrections 

From the second of these the increment in leading edge correction is found from equation 
(3.4-224) as 

Empirical corrections niay be imposed on the steady lifting part of the solution to the 
aerodynamic problem given in section 3.4.7.1. The empirical corrections are of three types. 
One introduces modifii ations to the steady aerodynamic influence coefficients: the second 
introduces changes to the flow incidence distribution on the aircraft: the third introduces 
direct changes to thc lifting pressure. 

Two sets ci steady aerodynamic influence coefficients, viz., tliosc defined by equation 
(3.4-1 69) anE. those defined by equation (3.4-1 7 I ’, are used in the empirical correction 
methods. Tne influcncc coefficients [ LSC] are included to permit corrections to tlic flow 
incidencc at the mean surfaces of slender hodies; thus, empirical corrections are made by 
rnakitg corrections to the following equation: 

i c p l  = C L S C I C Y ’ )  -I. CAICS i ( 3.4-23 7 

where the incidence matrix { W) is 1lc.tinc.tl by equation t3.4-IOX) and inclutles { 9; } the 
flow incidence a t  slentler holly nican su r fws .  

’Ihc empiriciil corrections arc. applictl to equation (3.4-237) ;IS follows: 



( I  ) Tlir flow incidence distribution { 9 '}mrty be modified by multiplying the value 
at each control point by a constant. ci. lhus. a modified flow incidence distri- 
bution is obtained as 

(3.4-238) 

wlicre rci  J is a diagonal matrix of correction constants. 

( 2 )  TIE lifting pressure distribution may be corrected by multiplying the aero- 
dynamic intluence coefficients by correction constsnts 3s followvs: 

(3.4-239) 

wvliere rcq) - is a diagonal matrix of correction constants. 

(3) Any or all elements of the steady aerodynamic influence coefficient matrix [ LSC] 
may be rephccd by an empirical value. 

(4) The flow incidencc distrihution { tP '} may be arbitrrtrily prescribed as a linear 
function of  some motion parrimeter such as angle of attack. viz. 

{ Y ' I  = {YkIa 
and an incremental lifting pressure cocflicient mcly be added as 

(3.4-240) 

The lifting pressure due t o  this flow incidence and the incremental pressure is then 
superimposed on the lifting prcssure computed by equation (3.3-21 8) to  correct the 
lift pressure as follows: 

(3.4-24 1 

where tlic iiiatriccs [ A I  and [ LSCl niay be suhjcctccl to the corrections of i 1 
through ( 3 )  above. 

A sitl1iplc empirical correction using mctltod 1 I 1 i n  conjunction with wind tiinnel 
pressure morlcl data is prcsentccl in volume IV. An cuiiiplc' involving rnetliocls ( 3 )  m c l  (-1 1 is 
as followlr. Assum<* iliat wind tunnel testing or sonic otlicr soitrcc' lmv idc>  tlic llow 
incidence c,istrihution on LI conventional r~ft-niout1ted Iiorimntal tail and that the t h v  
incidence is given ;is a function of angle ot' attack. C;illing this tlow incidcncc Jistribution 
tile riicasurcd ciistritxttion. tlic cnipiriial tlo\v inciilcncc. tlistribution {+;I ot' t i ic. t t~ot1 1 - 1 1  iz  
introduccd LIS tlic dit'fcrc.iic.c bctivccw the nicasurcd ;tiid thcorcfical distrihiitions ;it t!!c 
Iiori/ontal tail panel control points. : \ w n i i n g  llic Iiori/ontai t a i l  to hc tlic 
thc tlirwctical Jistrihution c)f  tlow iiiL.idcnc.c i \  t'ourid troiii equation ( 3 . 4 1  (IX 1 ;IS 

t h i n  hot!!.. 



where 

contains the rows of the matrix [AICI describing flow incidence at the control points of the 
horizontal tail with that partition describing the influence of the horizontal tail set to zero. 

3.4.1 5 Near Field-Far Field Approximation 

'The FLEXSTAB system contains a near field-far field approximation in the thin body 
lifting aerodynamic solution. A portion of the aerodynamic surface, e& a wing tip or a 
control surface, may be represented by a very dense Faneling and solved as an isolated flow 
problem. This solution is then averaged, in the manner described below, and patched into 
the aerodynamic solution for a complete configuration. The result is a flow solution for the 
complete configuration-the far field-based on the detailed solution to the isolated portion 
of the aerodynamic surface-the neai field. 

3.#. 15. I Aerodynamic matrices involved in the approximation. -The aerodynamic 
matrix equations which are generated using the near field-far field approxirn3tion are given 
by equations (3.4-62) and (3.4-1 57), viz., 

and 

V V wherein the matrix [aWB,W1 is a partition of the matrix [aWB,WBJ. These equations, it 
may be recalled, are the relations describing flow incidence at the thin body vortex panel 
control points, the flow incidence resulting from the strengths of the vorticity distributions 
on these panels. 

3.4.15.2 :Yrarfirld panel arrangcmtvir. --Two vortex paneling arrarigements are 
associated with a nr'dr field region, figure 3.4-26. Taking a wing for an ~:xample and choosing 
the tip region as a near field. the wing is paneled without considering .he large vorticiiy 
distribution gradients in the tip regim. figure 3.426.  The panel size at the tip is deliberately 
chosen to be too large to descrihe the detailed pressure distrihirtio.. ')ut small enough to 
accuntcly yield the acrodynmic forces. assuming that the liftin$; prt*ssurc on each panel is 
an accuntc' average value for tlic lifting prrssurc ac:ing on the xrodynamic surf;icc. 
rcprcsentcd hy thc panel. The .iccurJtc ~ V K J ~ C  values of lifting prcssurcs ;ire ohtaincd from 
J ricdr ticltl solution to the flow prohlcrn in  t!ic t ip rcgion. 
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tip 
field region) 

FIGUR€3.4-2G.-EXAMPLE OF NEAR FIELD-FAR FIELD APPROXIMATICN 

The vortex panels of iliz near field regio.. ?re subdivided into smaller panels, figure 
3.4-27. A number n of chordwise subdivisions and a number m of spanwise subdivisions 
are specified and each near field vortex panel is subdivided as shown by figure 3.427. If 
bWli is the span of a panel in the near field region. the subpanel has the span bWlj/m: if 
CwliL and C W ~ ~ R  are the left- and right-Jiand chords of jth panel, then the subpanel chords 
at left- and right-hand edges are CwliL/n and CWIiR/fl. respectively. 

Panel subdivision 

FfGURE 3.4.27.-NEAR FIELD VORTEX PANEL SUBOI VISION 
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3.4.15.3 Modifications of the aerodyr!amic equations. -An aerodynamic equation, 
analogous to equation (3.4-1 57). is generated for the near field region as follows: 

(3.4-242) 

where I*: is the flow incidence at the near field panel subdivision control points induced 
by the near field vorticity strengths \ S z  1 - the strengths of the panel subdividws. ?:lis 

equation is solved to find the vorticity strengths of the panel subdivisions as 

(3.4 

A single ccntrol point at the geometric centroid of each of the original panels is 
introduced. Considering the ith panel of the original panels of the near field region, the flow 
incidences at control points of the panel subdivisions of the it!' paii?I ale set equal to the 
flow incidence at the ith panel geometric centroid control point. This oprrdtion is 
accomplished by the matrix operation 

(3.4-244) 

where 1 *XIi and 1 1 1 ,  have m times n elements- 1 1 t i  being simply a column matrix 
of ones. Extending this operaticn to all the panels of tlie near field region leads tc, 

where 

(3 -4-24 5 ) 

and 
orisinal panels i n  the near field region. 

\ is the matrix ol' flow incidences a t  tlie geometric ccntroid cont!ol points of tlie 

An average wrtcx pand strength is also corr!p:ited for each 01' tlic 1irigin;iI panels. This 
is a weighted a\c'r:tge tuscd on the panel sulitliviwn areas. Tlie \vciglitc(l ;rverragc \trcngtIi ot' 
ttie it11 original pi ne] is exprcssclt 3s 
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where 

and Si is the area of ith p a x !  subdivision while S;s.ll is the area of the ith original paixl .  
Extending this result t o  all panels and pi1tnc.1 subdivisions leads to the expression 

(3.4-24 7 ) 

where 

Substituting tlie transformations, equations (3.4-245) and (3.4-247). into the near field 
solution. equation (3.4-243). leads to 

where 

This expression is now inverted to ohtai-i 

( 3.4-249 

v The elements of the matrix fAn,ll]- '  are inserted into the matriccs I ; I , ~ ~ . ~ , I  and 
(awBsWB I, replacing !he elements corrcspontlinp to ilic criginal P;Iricls of  tlic i i t w  ficltl 
region. Tlii- matriccs (aWR,WI and I ,t,\ .'B.WBI, in  this niodificll form. arc t1it.n irs<(.l i r l  t l ic 

solutions to t h o  cornhind stcady rtcroclynarnic prohlem, section 3.1.7. as wcl! as i n  the 
conil7inetl unstea,ly acrodynamic lil'tinp Iirolilt'ni, section 3.4.1 1 .  

v 
V v 



-3.4.1.5-4 Application of the uppro-rimation. -As noted hove, the 
near fiild-far k l d  approximation is used in constructing the soluticn to  th2t part of the 
aerodynamic problem which incorporates the vortex panels. i c.. tilt lifting part. The 
approximation has a close resemblance to Saint-Venant’s prir,cipIe, reference 2-1. pp 89-90. 
biz. ,  if the boundary condition at  a portion of the surface is replaced by a different 
boundary mndition on the same portion of the surface, then the effects of the two different 
boundary conditions sufficiently far removed are essentially the same, provided that the 
force distributions are statidly equivalent. 

The near kld-far field approximation may be applied in seven1 w3ys. nie near field 
may be amfined to a .tion of a singk thin body, as in the example above. or it may 
encompass the entire M y  or se*.-eral bodies. me near field may also include the inter- 
f e m c e  surface of a slender body. This capaLAty allows a wing-bdy intersection to  be 
paneled densely in a near fi ld,  thereby inmasing the accuracy of the solation in this region 
of complex vorticity distribution. 

3.5 AERODYNAMiC FORCE DERIVATIVES 

In this section the results derived in the preceding sections are combined into a set of 
matri.. equations describing the aerodynamic forces acting on an aircraft arising from 
changes in the aircraft’s motion, ccntrol surface settings. and elastic deformation. These 
matrix equations are used in the FLEXSTAB system analysis to  genemte the ae,udpnamic 
:O~Y derivatrvzs and, subsequentiy, in scctions 5 and 6, to generate the stability derivatives 
tor a flexible aircraft. In section 3.5.1 transformation matricw are derived which transform 
the aerodynamic pressure coefficients of section 3.4 into a system of acrodynamir forces 
acting on an aircraft. In section 3-52 matrix expr.”sions are derived which relate the 
aerodynamic pmsure coefficients to an aircraft’s motion. con:rol a*irface settings. and 
elastic deformatim. lhe results of sections 3.5.1 arid 3.5.2 are tiien combined in a 
first-order perturbation espansisn in sectioa 3.5.3. miis expansion yiel,is equations for 
formulating the aerodynamic force derivatives. 

3.5.1 Aerodynamic Forces 

The objective of !% section is to derive equations which resolve tlie rrcrodynamic 
suurface presswe into 3 force and couple at the crntcr of mass of an aircraft. Tlirse equations 
are derived from the following integrals: 

and 

S 

s 
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where Cp is the aerodynamic d a c e  pressure coefficient governed by the equations of 
section 3.3.3.Z is the unit vector normal to  the aerodynamic surfaces defined analytially 
by the equations in section\ 3.2.3 and 3.2.4. and% the position vector shown by f w  
2.?-3 from the center of mass to a point on the aerodynamic d a c e .  The deri:.-d equations 
incorporate the matrices of pressure coefficients. derived in sections 3.4.2 thruugh 3.4.1 I ,  
into a matrix analogue to the integral equations given by eqlutions (3.11 ) and (3.52 j 
above. 
first-order approximations consistent with the aerodynamic theory developed in section 3.2 
and are based on the numerical method of solution developed in section 3.4. 

matrix equations for :he total aerodynamic force and coup1,- are derived as 

3-5- I .  I Pmeling scheme e-rpansbn of the aedynamic / m e  and couple.-The matrix 
equations for the aerodynamic force and couple are derived starting from an expansion of 
aqw.tions (35-1 )and (35-2). -This expansion is in terms of aeradyaamic forces acting at  the 
centers of pressure of the d a c e  ngments introduced by the paneling scheme of scction 
3.4.1 - -9s such. the a:mdynamic force and couple at the aircraft center of mass appear as 
follows: 

and (3.5-3) 

‘A -L 

where fAwli is the force at the ith panel of the It’’ thin body. fgJ- is the forw at the j th panel 
on the m a n  iaterfelrncu surface of tlw Jth slender hody. and gJk is the force at the kth 
segment of the Jth slender body, figures 3.4-1 ancl3.4-2. Letting each of these forces he 
expanded on the Reference Axis System, the components of the i th  force are espressed as 



Wherp 

and 

n 
51 

1 
-x 
Q 

k’ 

0 

- 

~- 

nle coordinates Xi, Yi- Zi 3re the coordinates of the c-cnter of pressure at the ith panel or 
slender body segment relative t o  the center of mass and expanded OF the Reference A d s  
System. The total force and couple at the center o f  :.l3S dtie to the rredynainic forcxj at 
n panels 3nd segments is expressed as 
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'The matrix 13 I b termed the a igd body d e  shape matrix for msaa made apparent in 
section 4. 

351.2 A d >  ;mi? forcc at a thin Wt- pml  -The aerodynamic form at the 
a n t a  of pressurP o f a  thin body p a n e ~ . s ~ -  is expmsxi ;Is an integral of quantities w h i d  
may he defmed in terms of the (t.q, local panel coordinates shown by f i i  3.4-3. The 
aerodynamic force therefore appears as follows: 

(3.5-7) 

wIicre the subscripts u and 1. respzctiwly. refer to evaluation at points on the upper and 
lower aerwyrr.imic surfaces. 

The unit sudace normals.?;, anci?;i. are described analyticrlly by q a t i o n  (3.2-14). 
To first order in the aerodynamic perturbation panmetcrs they are esprcxed as 

- s l n  0,; + cos eIk  

and 
(3.5-8) 

h h 

+ s i n 0  I 7 - cos6 I k, 

3-1 71 



The redynamic pmssurc distriiution isassumed to be the sum of two parts.one part 
a symnlttric function of the local thin body coordinate 21 and the second part an antisym- 
metric function of ZI- First-order approximations to these pessurc distributions besed on 
the thin wing theo~~ of reference 2-3 are used in the derivation. The antisymmetric part, 
thmforc. is governed by 

and 

AC: C V - Cp V = 2y(XI,YI) 
p1 il 

cv = - cp v 
p1 U 

where y(XI.YI) is the vorticity distribution at the mean d a c e ,  

and 

The symmetric part of the pressure distribution is approximated as 

C z  Cs(X =T F ( X  ,Y 1)  P I I I I I  
U 

and 

(3.5-9 

(3.5-10) 

whcre ZI = kr,F$X1,Yi) is the thin body thickness shape. 

Introducing the approximations to tlie normal to the aerodynamic surfaces given h! 
‘A equations (3.5-8) 2nd (3.5-10). the aerodynamic panel force. f,\rri. is found from eqrintion 

(3.5-7) as follows: 

(3.5-1 I )  



Since the vorticity is uniform on each panel, sections 3.4.3 and 3.4.3, equation (3.5-1 1 ) 
immediitely reduces to 

where A C L n  is the lining pressure ,aefficient defied by equation (3.4-66) for the itl' 
panel. S e d  approximations are made in evaluating this expression in the FLEXSTAB 
system. lkese are as foUows: 

(I T S  (q) i swIi  
aHI aHI 

swIi - 
(3.54 3) 

where (aHl/aXl)i, (aF~/aXl)i and GWli are the values of the functions at the geometric 
centroid of the panel. fncmducing the approximations into equation (3.5-12) results in 

a FI T (-1 - 2CcS 'WI i 'WI~ I ax, i 

Introducing the de fi.. i t  ion 

(3.5-1 4) 
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which corresponds with the definition of equation (3.5-141, the cwmponents of 
aerodynamic panel force are expressed as follows: 

r 
(3.5-16) 

'WIi ACv pwIi 

- pIi;Iqj cs '\!I i 

3.5.1.3 Aerodynamic force at a mmtr interference surface p n v l  of a sletrder 
body.-The aerodynaivic force at the center of pressure of a mean interference surface 
pane1.P - is developed following the approach of section 3.5. I .Z above. As shown by 

section. and a unit vector normal t o  the surface of the jth panel is given by 
figures 3. BJk' 1 and 3.4-7, the mean interference surface is a cylinder with a polygon ~ross 

CI A -+ 
NBJj = s inGBJj j  + cosCIBJjk 

(3.5-1 7) 

where 6BJj is the angle shown by figure 3.5-1 - The normal to  the slender body surface at the 
geometric centroid of the jth panel is obtained from the analytica! description of the slender 
body surface normal. equation (3.2-20). To a first-order approximation in the perturbation 
aerodynamic parameters this vector is given by 

wher? the angles 8BJj and P B J ~  are related as 

e B J j  = lT /2 -pBJS  

The panel force is expressed 3s 

(3.5-19) 
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A 

t+, Jj N8Jj N W ~ I  to mean interference surface 

p BJj 

Slender body mean interfcence rurface panel 

FIGURE 3.51.4LENDER BODY MEAN INTERFERENCE SURFACE IJNIT NORMAL VECTOR 

but on assuming that equation (2.5-181 holds for all points on the panel X,<A on recognitin$ 
that the przsure is uniform this esprmion reduces to 

The matrix expression for the components of force. similar to equation (3 .5- ih) .  ~ppears as 
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3.5.1.4 Aemdyrtamic force at u slender body segment. -The aerodynamic force at the 
center of pressure of the kth slender body segment.7hk, is approximated as 

2n 

(3.5-22) 

* LBJk 

where the approximations arise by taking rj(Xj) to be the radius of an equivalent body of 
revolution, section 3.2.4. A Further approximation is introduced by letting the unit normal 
vectorz be the f m t a d e r  approximation from equation (3.4-20). Le., 

h 

arJ  
JoXJ  

+ dRJ + b ,asp aGJ + c :-sinp]i (3 .5 -231  
= -caJ5 JaxJ 

The pressure coeficient Cp is due to the isolated slender body thickness and lift, sections 
3.4.4.3.4.5. and 3.4.9. The surface pressure distribution, expressed ir. terms of the 
coordinate 8 shown by figure 3-4-20, is given by 

where Cp(Xj) S iz the pressure induced by line sources, while CiD(Xjbin  8 and CFD (Xj)cosO 
are, respectively, the pressures induced by the z and y line doublets. equations (3.4-1 29). 
(3.4-1 30), arid (3.4-1 37). 

Substituting the above expressions for the unit normal vector and the pressure into 
equation (3.5-22) and carrying out the integration with respect to y noting tliat y f 0 yields 

J "BJk 

3-1 70 



The integration with rspect t o  XJ is carried out  introducing the following approximations 

L~ JK 
(3.5-26) 

where the subscript k denotes evaluation at the midpoint o f  the slender body hc‘gment. 
From equations (3.5-25) and (3 .5-26)  the niatris expression for the components of force at 
the ccntcr of prcssurt‘ is deduced hs  

C 

r as 

C 
C’ 
’BJk 

(3.5-273 
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3.5.1.5 Combined aerodynamic panel and slender body segment forces. -The matrix 
expressions given by equations (3.5-16), (3.5-21 1, and (3.5-24) describing the aerodynamic 
forces at panels and slender body segments are combined into a single matrix expression as 

S is0 
fouows: (3 - 5-28) 

IfA) = qCTfTJCTRANStIfCp} + GITfTlcTT~I [ T ~ p l  f c p )  

where 1 $ r" is the matrix of isolated thickness induced pressure coefficients defined by 
equation (3.4-1 73),1 Cpl is the matrix of lifting pressure coefficients defined by eqmtion 

(3.4166). and contains CF 1 int-the thickness interference pressure defined by equation 
(3.4-1 74), while 

(3-5-29) 

forces a t  s l e n d e r  body 
segments 

+ 
forces a t  t h i n  body 
pane l s  

The matrix 1 fA 1 defined by equation (3.5-29) is identical t:, that appearing in equation 
(3.5-6); therefore, the total aerodynamic force and couple at the aircraft's center of mass 
can be computed from equation (3.5-28) hy th,: operations indicated by equation ( 3 . 5 4 ) .  

The transformation matrices appearing ir, equation (3.5-28) which resolve the 
aerodywnic pressure coefficients, ICp \Is0 and 1 Cpl, into thir! body panel and slender 
body segment forces are as follows. The matrix [Ttrl lransforms the components of force 
from the local thin and slender body axis systems to the Referenx Axis System; therefore. 



1 *'. zeros I 
0 

- s i n  €$ 
cos % 

I 

I - 

I 
zeros I 

' 

(3 -5-30) 

The matrix [TRANq 1 transforms isolated thickness irduced pressure. Le.. ?i{C: /Iso. to 
components of force in the local thin and slender body axis systems; therefore. it follows 
from equations (3.5-1 6) and (3.5-27 1 that 

where 

- 
b ' ' 

' 
zeros ' 

ze ros  

' 
I '  

I 
I 
I 

(3.5-3 1 ) 

ze ros  ' 



CT 3 E TF 

where 

I 
I 
1 
I 
I 

zero s 

* zeros 

(3.5-3 2) 

and OyIi is the local camber an&. 

The matrix [ T F P ~  transforms lifting presstires ii{C,l to components o; !Drce {FA}. 
equation (3.5-38). and is expressed in pal titione,[ form as 

I I 
zercs 

CTFpl = 
(3.5-33) 

where 

(3.5-34) 

The partition [Awl  transforms the lifting prcssurc on tlurt body panels. qua t ion  I 3.5-1 0).  
in to  lifting force cc.rnponcnts normal to the mean camher sitrfaces. 



ai: - dR J aGJ J v = ;[a (-;--I. + b (-1. s i n e  + C (-1 cos6,Tj]SBJjCp 
BJ j J an 3 J ax 3 J j  J ax j 

fA 
'BJj 

= -: s i n g  s cV J j  B J j  PBJj f A  
'B J j  

= -; cos9 s cv A 

' S J j  f ,  Jj B J j  PBJj 

3 . 5 - 2 E m D  YNAMlC FORCES FROM INTERFERENc - c P:TESSURE 
O N A  SLENDER BODY 

where (drJ/dXJ)j is the slope of the thickness shape c;f the body at the jth panel c'rntroid 
and 0 ~j is the angular oricntatim a f  the jth panel, figure 3.5-2. The cornpaLents of force at 
t!lc panel centroids arc applied directly to rhe ccnterline of the ?-lender body at the centroid 
of the intcrference surface centroid as follows: 

c,;s 
as, alLJ 

J axJ  3 Jj J ayT j=l U 

+ b ( - ) . s in9  + C (---> i . 0 ~ 0  
CI ,I- - . - 7  

'*'J j 

n 



where the sum is over the n panels forming the kth segment of the interference surface. 
The partition [INTI is therefore _given by (3 -5-3 5 b 

The partition [ UBLl yields the aerodynamic fcrces due to line doublet induccd 
pressures: and, although the aerodynamic surface pressure induccd by the line doublets 
wies in thc Xdirection. the nonlinear portion of the variation in the pressure is ignored 
and the pmswt: at ex& bender body segnent centroid is taken to be the a v c n p  of the 
prcessunz OVL- the entirc xgnent  Iensh. The acrodynamic forces at the segment centroids 
are found from equation (3.5-25) to  have the following components: 

nw dements of t i i c  partition 1 DBLl arc constructed from equation (3.5-36) with { Cp } 
a m n p d  so that -ILI )-doublet induc&prCssure coefficients occur first. f01lowc.d by 311 
Z-doubkt inducc4-pre.ccurc zocfficients. Thus, 

:a , 
-. I 
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Matrites containing cornpoitents of force computed by the above transformalions are 
as Ibllows: 

The eknents of these two zerodynamic force (or airload) matrices are 

and 

A Ef,) : 

{ F A 3  

e 
e 
0 

f A  
'BG j 

€*A 

f Z B J j  

BJ) 
A 

0 
e . - - -  
e 
0 
0 

A 

W T i  f X I  

' h i  
A f 

e 
e 
0 

(3.5-38) 

(3.5-39) 



3S. I -b  Cledwmmic punel forces front leuding edge mrrectiorr.-The leading edge 
thrust correction. equation (3.4-2243, for each thin body aerodynainic panet. where 
muhiplied by the panel span bi. yields an aerodynamic force in the X4irectioc. These 
airlds acle incorpontd into the systrm of airloads { [. equation (3.5-33). by the 
following transioimation 

where the transformation matrix lias the fol1o;ving parfirions 

The Lero partition causes the cwrnponznts of force at slender W y  segments to be 
?inchanged by the leading edge cmmctian. The n011-zet0 partition contains the following 
elements along the did-mml: 

[ 
The tr-nsfomiation. equation (3.540). therefore leads to the force mmponents 

at eacli of the thin body vortex p n e l  centroids. 

3-52 Lifting Pressure Coefficients in Terms of Flow Incidence 

11ie total liftinp prrujsun. distribution is found in coefficient form by combining the 
lifting pressure cwfficients due to unsteady incidence. equation (3.4-21 8). with the 
thickness induced lifting pressure. equation (3.4-1 74). The result of this liiicar sum is 



the partition of zeros corresponding to line doublet indriced pressures. This expression is 
further expanded by evaluating the flow incidence given by equation (2.3-69) at the 
aerodynamic control poi&. This operation is done in terms of the elastic deformation, the 
aircraft velocity components, and the control surface deflections as well as a reference 
camber shape. equation (2.3-69). 

In carrying out the above operations the aerod-mtmic influence coefficient matrices, 
and [AI and [aA]. are reorganized in that the colum;ls of these matrices are ordered 
differently from those shown in section 3.4.7 anti 3.0.1 I .  This reordering is indicated in 
equation (3.541 1 by the following changes in notation introduced when lmnstructing 
equation (3.54 I ) from equation (?.4-2 18): I A] is replaced by [Ape] and I6A 1 is repbced 
by (bApe1. Similarly, these changes must appear in equation (3.4-240). The reordering is 
related entirely to the line doublets and leads to  a flow incidence matrix having the 
following form: 

CAI& [A,] C6Al---c CaA,,] 

For the symmetric case (sec. 3.4.1 -5): 

s -  CY 1 = 

# 
Z- doublets of s l e n  - 

bodies  on t h e  p l c  le 
In 

of symmetry, n s '  + 
Y- and Z- double ts  of s lender  

bodies  off t h e  plane of 

(3.542) 

- off 
¶ 

symmetry, m = 

-A- ' v o r t i c i t y  panels  of t h i n  bodies  

off  t h e  plane of symmetry, 
t 

ZD where qTD and '#i 
trol points and 

denotes flow incidence at the i'l1 Ydouhlet and i th  Z-doublet con- 
Cyff and Qorf art' nunihcrs clctincd in appciiJis B of volume I l l .  T 
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For the antisymmetric case (sec. 3.4.1 5): 
(3.543) 

1 
Y- dotiblets of slender b o d i e s  

or, t h e  plane of symmetry, 

n E ton 
S + 

Y- and Z- doublets  of s lender  
bodies off the plane of 

off 
s '  symmetry, m f 22 

t 
v o r t i c i t y  panels of t h i n  bodies 
- t both on and off t h e  plane of 

symmetry, t;n 

where !?? is a number defined in appendix B of volume 111. 

3.5.2. I Expisioti of the flow iiiciderrce rnatri-r.-Based on equation (3.4-21 8) the 
flow incidence matrix may be expressed as 

where {I) = { w C )  + (e") + CY,) 

and 

The incidence { \crc I ih hascd on the ui;,ber shapc of tlic undrformed aircraft and is idcntificd 
witti (\cr(J - rtic incillence in tlic anscncr of motion and clastic deformation. case I I of 
scction 2.3.3. I ; { O * }  is tlie elastic ddorniation of 1he camber shape; and ( q ~  } is the flow 
incidcncc duc to aircmft motion (viz., motion of tlie Body Axis System rclativc to the Fluid 
Asis Systcni. section 2.2.3) and control surface dellcctions. Referring to equation (2.3-69). 
tlic llow incidcnce is cxprcsscil as 



where 

b A -  * 
D - c  P -P, Q --Q, R E -I? 

2751 -2u1 2u1 

The clciricnts of the coefficient column matrices am as foilows: 

{ !i } 
5e 

1 2- 3mtlets slender bodies  on the 

plane of symmetry, on 
2 -  9 ., 

1 Y- and 2- Jcii-iets of slmt!er b o d i e s  
off c f f  the p l a n e  of s p m e t r y ,  2tS , 

i 
G i t y  F a n e l s  of t h i n  bod ie s  of f  
the p l a n e  of symmetry, o f f  I Q, 



The elements of the control incidence vectors, e.g, { ?1'6e } , introduce the effects of 
arbitrary gearing of the control surface rotations. The change in incidence at  each a e m  
dynamic control point. e.g, Wv , is related to the control rotation be by a gear ratio (k6,)i, 
which can have any specified v%e, either positive or negative. Further, thc control surface 
hinge line for a thin body control surface (fig. 3.5-3) can have any angle of sweep, rw' (. The 
hinge line sweep angle is measured in the local thin body axis system, section 3.2.4: &us. 
referring to equation (2.3-53). incidence at the ith panel centroid on the Ith thin body is 
given by 

) WI 
6e = (n WI 

*i X6e i 

where 

YI - 
Control surface 

Elevator mtrol surface 
located on ~ t h  thin 

FIGURE 3.53.-CONTROL SURFACE HINGE LINE 

The quantities ( I I X ~ ~ ) ~  are given the symbol S in sections 9.2.1 and 9.2.2 of Volume I I -  
CONTROL SURFACE DATA. 
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Aileron : 
e 
e 
a 

YD 
6a 'i 

e 
b 
b 

- - - -  
e 
b 
e 

YD 
'ha 
ZD 
'6 a 

Y .  

1. 

e 
e 
e 

- - - -  
rp" 6a I 

- 

7- 
aOC 

s 

.off 2L 
S 

+ ,a? + gT cff 

(3.547) 

where the elements may have any value representing camber surface change due to aileron 
control surface deflection, 6,. 

Rudder: 
e 
e . 
YD 
6r 'i 

e 
e 
e 

- - -  
e 

e 

YD 
Sr 'i 

ZD 
''6, 
e 

- - -  + 
1 on  o f f  a ,  + 2,  

f' * 

(3.5-48) 

where the elrments may Iiaw any value rcprcsznting camhcr surtacc chanpc duc to rutlclcr 
control surfact. drflcction 6,. 
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Angle of attack: 

+ 
t 

.- 
where 01 is the dihedral angle of V.-: Ith thin body and { I }  \ ~ r i  has as many elements as there 
are vorticity panels on the It[' tt-.n body. 

C 

Angle of sidcdi?: - a 

i 
0 
0 
b t 
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Roll rate: 

[ -Yi ?] 2 a0 f 
S (3.5-5 1 ) 

where 81 is the dihedrd angle of thc Ith thin body and { Y } w ~ ,  { Z\wl have the Reference 
Axis Systcm coordinates of the vorticity panel ceiitn;ir;s on the Ith thin body measured 
relative to the :enter r :  : l ! ~ .  

Pitch rate: 

{Y 1 Q 

- - - - -  
e 

e 

(3.5-52) 

where 01 is the dihedral angle of the Ill1 thin body and { x}wl contains the X-Refercncc 
Axis Systerii coordinates of the vorticity pilnel ccntroids on thc 1"' thin body rrieasurcd 
relative to the ccntcr of mass. 

3-191 



Yaw rate: 

( Y  i E R 

- 4  --- 

[ 3 off 2 a  
S 

t 
t 

(3 553) 

where B i  is the dihtdral angle of the Ith thin body and { %}\,1 ioritains 'lie X-Reference 
Axis System coordinates of  the vorticity panel centroids on the Ith t1ri.i body measure 
relative to  tlie center of mass. f 

3.5.2 2 Eff2ct.v oJ'c/jmtFiic prcwiw arid .Vacli rrrrmher rariulhris. - Motion of the 
aircraft reh t iw to the Fluid Avis System. section 2.2.3. introdui es a variation in the 
dynamic prcssure and ILfach number at the aircraft surfacc. i.e.. .I variation in these 
quantities from their values apparent to an observer fised relative to tlie Fluid Axis Syqtem. 
These variations are described by equations (2.3-76) and (2.3-77 1 of the kinematic 
description. 

I n  the FLEXSTAB system the dynamic prcssure and Mach number variations are 
simplified by  assuming that the dimensions of an aircraft in the z-dirwtion 'ire always 
small- at  least an order of  magnitude Iris\ than either the span or  tile ~ttngtli. Variations in 
the dynamic pressure and Mach number along the zifirection therefore are neglected and 
equations (7.3-76) and (2.3-77) art' approximatrid as 

anti 



The dynamic preysure is evaluated at the aerodynamic centroids of all aerodynamic 
segments (Le-, slender body centerline segments, slender body mean interference surface 
panels, and thin tody mean surface panels, figures 3.41 and 3-42). The values obtained are 
arranged in matrix f m n  to conform with the matrix [CPM] defined by equation (3.4-167). 
The result is expmsed as 

where [IcJ is an identity matrix and 

4 I 

1 
I *  

zeros - 1, 

--- 

I 

I 
- -  

The quantities v(i), &i). Y(k) are the coordinates of the segment aerodynamic centroids 
relative to the aircraft center of mass expanded on the Reference Axis System. 

A matrix expression similar to equation (3.5-54) is coiistructed PO account for the 
effect of dynamic pressure variations on the pressure generated by the isolated thickness, 
i.e., the source distributions ?f sections 3.4.3 and 3.4.4: hence. the matrix is constructed to 
conform to the matrix {Cp} s IS3 defined by equation (3.4-1 73). The result is expressed as 

where 

and [Yt] is formed like ryc] but does not include the coordinates of thc slender body 
mean interfercnce surfacc pancls. 
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The effects of Mach number variatiors arc 3pplied only t o  the source distributions of 
the isolated thickness probiztiis of sections 3.4.2 and 3.4.4. The matrix form. therefore, is 
given by 

t r K 3 

Introtlucin~ thc r t ~  nai11ic pressure and h k ~ h  number corrections given by tqitatiot:s 
(2.5-54) through (3 .5 -<6)  into :tic pressure transformation equation. ix., equatioti (3.5-28). 
leads to 

5 .  [Is0 
where {acj,,'4~,~, 
coeflicicnts >iven by qua t ion  (3.4-220). 

is the effect of speed lariations o n  the isolated tliichness pressure 

3.5.3 Aerodynamic Force Derivative Formulation 

The aerodynamic forces are found by substituting the pressurc coefficients. tn(lli:!tiOi1 

8 3.3-21 7). into the pressure transformation piven by equation (3 .5-57  1 and constructing 3 
tirst-ordc'r pcrtw )ation cspansicn. The coc'fficientr of the perrurhalion motion variatdes arc 
tlic Jesircd aerortynrlmic force tleriv:ititrs. 

3.5.3. I Rctbrwcc .S/urc~. -- In thc FLtSSTXB system the acrodynarnic force cieriva- 
tivcs arc' found r'roni perturhations 3boiit .! referwsc statc whicl, consists o t  steady motion. 
I n  t tic rctL"rt.ncc state tlic !vt'ssiirtt transfcmnation is piven by 
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and the lifting pressure coefticicnts are 

where the subscript 1 denotes evaluation in the reterence state and as noted in section 
3 . 5 2  

~'3 .3 .2  Perturbation cvpnnsioti.-Thc perturbation expansion is an expansion about 
the reference state described in the preceding section and is obtained by eriluating equation 
(3.5-57) for a state of unsteady motion consisting of a small perturbation from the steady, 
reference state of  motion. Tlie tnxlat icnal  and rotational velocities of the aircraft. 
equation (2.2-3). are expressed as 

and 

where c A h 

+ wkg v = ui3 + v j ,  -* -+ 

ZP 

and 



The Xlacli i i u i i i k  of the oncoming stream. equation (3.5-53). is pert;lrbed 3s 

_- 

Finally. perturbations to  tlie flow incidence occur and are obtained from quai ions  (3.54! ) 
as 

Suhstitutins 111s above Iirstader expansions into qua t ion  I 3-5-57 1. neglecting terms 
whish arc' d x c o n d  arrd liiglirr d e r  in the pzrturlr;l:ion quantities as well ;15 a term 
iiivolvine a ?;rtcond-orJer derivative of  the im13ted thickness induced (rrssure coefficients. 
:c*; jl". witti respect to ~ a c i i  number. leais t o  tlit ?-allowing first-orcier perturbation 
e\p.,i:ision of  thc aerodynamic forces: 



Reference flight condition flow incidence: 

krturbation isolated thickness pmssurr: 

Perturbation lifting p m r c  coefficients: 

lxading dp correction terms. { D} I and { D} p. are expanded in the following. 

3.5.3.3 Expaitsion ofktvdiiig tdge amecriari rcniu- -The expnsion o f  the leading 
edge correction terms is dewloped from tlie results o f  section 3.4.1 2. The integmted 
incidence 

contains the integrated inciGenw due to rigid M y  motion of the aircnft. This inddenctr is 
@\-en by 

a nJ 



where the column matrix { LEC} conhim the chord lengths of the leading edge panels of 
thin bodies. Le.. 

(3.5-68) 

and 

For die reikrencc llight mndiiion tile inrepntcd incidence is given Py 

-:-I 'h 



The perturbation ledingedge correction appears= 

The tenn@Apg 1 { +b ({ LEC} @{ +}p) contributing to the perturbation k a d q  edge 
thrust correction. equation (3.5-71 ). is expressed as -9 w n  based on the expansion of the 
flow incidence matrix given by equation (3.547): t h  sum is given by 

(3 - 5-72] 
Where 

and 

also Wp*I = - C T ? J . ? I S ~ ~ I C ~ ' ? ~  J 

353.4  Forractkarir~n e).? fire at.rcdt-rrainic fiwcc .!:*r!!utiws. -The aerodynamic force 
derivatives 3re found by mmbinins equations t3.54d k t3 .542) .  and (3.5-63). expanding 
{?9q}pand {SM)p by substituting from equation (3.542). n e  coefficients of the 
perturbation moiion miables in the resulting esyrtsion are the acmdynamic force 
dzrivativrs relating perturbation aerdynaniic segment forzcs to the perturbation moticri 
bariabltts. Perturbations to  the total aerodynamic f o w  and couple at tkc aircraft cvntcr of 
mass are found by openting on { fA}p using the rigid b d y  mocic shape matrix as in 
equation 13.5-6). i.e.. 

(3.5-73) 



F-, 1 ~ &  is tnnsfomed tc components in the ~ o d y   xis System in the 
transformation 

{l& = 2 c a c +  -* 1 T CfA3P (3.5-74) 

-1 c 0 
0-1 0 I zems 

0 0-1 

Thc resulting expressions, howtver, are not immediately useful because the elastic 
deformation { B*}appears explicitly. Explicit dependence on the elastic deformation is 
eliwinated using equations derived in Section 4. Final expressions for the aerodyaamic force 
derivatives arc derived in sections 5 and 6. 

Moments about the origin of  the Reference Axis System are obtained by writing [&; 1 
of equation (3.5-5) in terms of the coordinates xi, Yb 2;. This resuits in 

A where (FR) contains the required aerodynamic moments about the on@n of the Reference 
Axis System. 



4.0 STRUCTURES 

4.1 INTRODUCTION 

The structural equations used in formulating tlie FLEXSTAR system an: derived from 
the classical. linear thewy o f  elasticity. reference 2-1. The derivation. based on the finite 
element method. leads t o  structural equations of motion expressed in terms of m a t r i m  
relating structural motions to tlie applied - iedyr .amic.  inertial. and propulsion system 
foras .  

The structural motion was introduced in section 2.3 as a time-varying displacement 
field,* ez.. 

(4.1-1) 

lllis equation represents the motion o f  the structure o f  an aircraft relative t o  tlie hody- 
fixed axis systems (mean reference frames) introduced bjr section 2.2. In the finite 
elemerit method. !he structure is subdivided into elements. and the displacement field is 
described over each element by two sets o f  quantities: ( I I simple functions o f  the Keference 
AKis System cccnlinates and ( 2 )  the values of the displacement components -It a small 
nwnber of element boundary points called n d c s .  The method 1 ii.l& equations which are an 
approsimarim t o  the partial differential equations wliich govern tlie con ipnrn t s  of d in the 
theoretical elasticity problem. The approsiriiite equations from tlie finite element method 
are a set of second-ordsr. linear. ordinary differential equations governing the values of 
time-varying disolacemsnt com?onents 31 the nodes. These equations. formulated in terms 
of matrices. an' the structural equatiot?s oimotion used i n  FLEXST.-\B. 

A 

Tlir eq:tations o f  motion ah: derived i n  section 4.2 starting from Haniilton's principle. 
rc:;'rcnce 4-i : this approach focuses the deriwtioii on rht. kinctiiatics of tile problem. This 
starting point is cliosen h t ~ ~ i t s e  tlir tiicon of elasticity used i n  tlie derirition introduces 
unusual constraints on the motion. The wistrainfs arc limitations on the magnitude of 
rotations of tlie structure re!ative IO tile ~*wrdina tc  systc111 usetl in the analytiertl llcsiription 
of the elastic 111eory. The tlcrivation iwoccedins iron1 I lamilton's principle claritics this 
important point. T!ie rcaticr wlio  i3 n o t  io i i ir .rncA wit11 tlicse Jct;!ils ma!. iyiort. tlic 
contents of sections 4.2. I .  4.2.2.3.  4.2.2.4. ant1 4.2.2.5. 1.Iie rcni3iivler ofwcticin 4.2 is 
suftScicnt tor a t le~irt~it i t ) i i  I ) I '  tlic I ~ l . l~SS ' l~ .~ \ t% \ ! . \~L - i i i  ~ ~ o r i i i i i i ~ t i ~ n .  
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finite element metltod. These metliods are applied in sections 4.3 and 4.3 to  derive the 
tnnsfonmtions for the specific finite element methods used in FLEXSTAB. 

Tlie FLFXSTAB system is formulated t o  function using finite element data from either 
of two sources. One sourcy. a part o f  the FLEXSTAB system crlled the Internal Structural 
Influence Coefticient Method (ISIC). is derived in section 4.3. ?lie tinite element data from 
this sourre is bawd on the structure's I?ei!ig represented entirely as a collection of  beams. 
Tlie second source may be any method which genentes finite element data satisfyin_e cvrtair 
wqiiircments of the FLEXSTAB system. The requirements Oli the finite element data ~ I Y  

delineated in section 4.4. 

4.2 STRCiCTIJRAL EOU.ATIC\NS OF MOTION 

42-  1 Hamilton's Principle 

The equations of motior: far a tlesiblr aircmft are lierived in t tiis section from 
Hamilton's principle. section 2-4 of reference 4-1. For a flexible aircraft. t!sniilton's 
principle appears as follows: 

/T285;*'di = r t 2  (K-,')& + 
& 

L 1  
I 

t l  
9 (4.2-1 

wlierc h: i.; the kinetic energy detiiied as 



In the FLEXSTAB system the structural theory (and. therefore. the strain energy) is 
expressed in a body-f..xed axis system and not the Inertial Axis System 3s required by 
equation (4.3-1 ). The strain energy is expressed in a body-fixed axis system lwcause the 
structural theory is based on the well-known approximations o f  tlie "classical" theory of 
elasticity, pp- 53-56 and 84-86 of reference 4-2. In part. these approximations relate to 
rotations of the structure relative to the coordinate systcii; in which the structural theory i; 
expressed, and For the approximations to be valid t h e x  rotaticns must be smal!. As shown 
by reFerence 4-2. when a structure is massive (Le.. having dimenSon5 of the same order of  
magnitude in all directions) its rotations are described accurately by tlie theory only when 
they have the same small order of magnitude as the elastic e lcngt ions and shexs-0.005 
radians for typical aircraft materials. Following the classificxtion of reference 4-2. when an 
aircraft structunl component is tlexible ii.e., having dimensions in one o r  two diwctions 
which an: small by comparison with the dimensions in the remaiising directions such as 
wings. tail surfaces, and slender Fuselages) sections of the strtlcture in directions of the small 
dimensions may undergo rotation5 accurately described by the theory when tlie rotations 
satisfy the less stringent rrquixment: small by compxiror. to  unity. I n  either cxse. licwever. 
whether the structurr is massive or  Ceuible. 'he coordinate system used in expressing the 
strain energy cannot be the Inertial Axis System as required by equation (42-1 ). This 
conclusion follows because rotations ot tlic structurr: relative t a  the Inertial h i ;  System 
must be permitted to  have arbitnrill- brgc niajziitudes in a dynamic analysis such as that 
performed by FLEXSTAB. 

Letting the coonlinate system for the structural tlieory he tlic Reference Axis System. 
table 2.1 - I .  the coordinate; appearing in Hamilton's principle are tliose introduced in 
section 2.3 as 



where the components o f x l  andf,2 are six undetermined lagrange multipliers, section 2-4 
f reference 4-1, and the first variation of the coordinates is given by . 

" (4.2-4) 
ti;@= ti;; + sirxg +-ab 

wherein the variation &is thevariation in rotation dtained as G= J&it and S& the 
variation in elastic deformation required to satisfy the mean reference frame constraint 
conditions. 

The variational problem &sed by equation (4.2-3) yields structural equations of 
tion which. for a complex structure like that of an aircraft, cannot be evaluated 

mericylllv. To obtain equations which can be evaluated, Hamilton% principle is expressed 

tions governing the 
te set of equations 

d in doing this are 
consistent with those intmduced for the aerodynamics problem of section 3. The finite 
element method of structural analysis is. in certain respeck, similar to the surface segmenr- 
ing scheme used in genenting the aerod;namic intluencx coeft?ci:ients developed in 
cection 3.4. 

4--*.2 L Fiilite eletnenr conc.epts.-The concepts used in redUCii.g the continuous 
probkm to tile appmsiwate. finite rlrnient problem are intmluced by reference 4-3 as 
follows: '*. _ _  

0-- .- . . - .  
parated by iniaginary lines or surfaces into a 

b; Tih: I~*~h:k~ern&i& arcassunied to he interconnected at  a number of discrete 
nodal pGri*s sitii;trd.ort their boundaries. Ilw displacements of these nodal 
points are th&!mic unknown quantities to be determined. 

For t.icI, finite clenicnt 3 fiincrion. !WY.Y.Z)  for hinctions S$X.Y.Z)h is 
t.9to.cn lo k . c t i ~ i ~  uniquely the state of ilisplaccnieiit wirhi i i  ti it '  elment in terms 
of its i m i a i  citq~l.ict'ntt'iits. { P} .  3s I'OIIOWS: 

. 
- - -  

c )  



Structural motion was introduced into the kinematic description by equation 
(2.3-14) as a time-varying displacement fsld relative to the body fixed axis 
systems, viz., 

The components of this vector field are expanded on the Reference Axis System, 
section 2.2, as follows: 

dX = dX(X,Y,Z,r), 

The displacement relations, equation (4.2-5), describe these components for each 
finite element in terms of displacement functions which are independent of time 
as follows: 

(4.24) 

a where the displacement fcnctions Nx+X,Y,Z), N%i(X,Y,Z). N;i(X.Y.Z) are 
continuous functions of the coordin.ites for points interior to the boundaries of 
the ath finite clement and S!(t) is the it" nodal displacement component for the 
ath finite element. Equations (4.26) are formulated in terms of nutrices as follows: 

{da(X,Y,2,t)) = CNatX,Y,Z>l{6a(t 1)  (4.2-7) 

where 



and 

(sa) z 
~] &? 

0 

t functions (item c) defme uniquely the state of strain 
lement in terms of its nodal displacements. The stnins 

elastic propetties o 
out the element and - 

e) The forces applied to the structure are replaced W i h  an equivalent set of 
concentrated forces acting at the nodes. For the aIh finite elemsnt these nodal 
forces am denoted as {p}. and equivalence with the external forces is established 
by the followins virtual work relation: 

a T  63 = & { 6  1 {Qa) 

= 6 1 6  a T  1 (1 [H a T  1 {Ra!dV + CNal'{Pa)dS) 
Va Sa 

where 6 {sa} ar; virtual nodal displacements and the elements of {Ra} and {P"} 
are'the components of body forces and surface tractionsapplied to the ath finite 
element of volume Va and surface area Sa. Assuming the virtual displacements to be 
arbitrary, the equivalent nodal forces are found as follows: 

f )  The total forces concentrated at the nodes { F } must bc i n  equilibrium with the 
applied loails and [tie stresses a t  the element t>ounlIaric:s. EqtiiliIvium of tile all1 
Ciiiitc rlcment thcrefort: is rspit.ssed as follows. 

(3.2-9) 
ITa) = CK"l{6a)  - iQa) 

d i m  { 6" } arc' the nodal displnccmcnts . itid i Ka I (a square. symmetric mat r ix)  is tlic 
stift'nc'bs mritriu ot' thc ath  Iinitc clcmcnt. cf.. section 4.3.1 . S .  



g) A structure IS represented by a number of finite elements, and a stiffiiess relation 
for the stiucfurc- is assembled by conibi the element stiffnks-re;&iois, Le., 
equation (4.2-?). The element stiffness relations are combined by impos-ing two 
requifements: ( I  ) that the nodal forces be ~ I I  equilibrium and (2) that the nodal ~ 

displacements be continuous. The resulting-stiffness matrix is called the composite 
stiffness matrix. 

The operations leadmg to assembly of the composite stiffness relation are made 
systematic by introducing the following notation. At the ith node of the structure 

{Ti) 

1 
[ai } 

components of total nodal force 

components of applied nodal fo 

components of nodal displacement 

At the node of the ath f i t v  element joined to the ith structural node - 

{ 1 E components of t,>tal notid force* 

{q 1 E cornpoibents of applied nodal forces* 

16; 1 E components of nodal displacement 

The nodal force quantities arc %t into correspondence by letting 

(4.2- 1 0) 

where the sum is over all rloments joined to the ith structurd: nede. The nodal 
displacement quantities a ~ :  set hito correspondence by letting 

(4.3-1 1 ) 

wlwrc the quality is inipised for 311 clenients joined to the itll sf -.ctiiraI notlc. 
Equations (4 .2- IO)  mal\c rlie iiollal forces a t  [ !IC striictiiral notles the I <  ,u!tants of 
tlic nodal forces acting on t1:c cleniciits joined to c:icli structurvl notlc. while 
c'qiution (4.2-1 I irnpnws continuity ;it illtl structural nodes. 

*Corrcspondencc with t1:c notatio,i o f  rcfcrencc 4-1 is givcii ly 
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The set of noddl disptacmeiit corn~nai ts  for a struckire with n nodes is 
contaiiied in the matrix 

the matrices 

(4.2-1 2) 

while the sets of total and applied nodal forces for the stlucturc are conthined in 
'i (4.2-13) 

Applying the opcntions shown by equstions (4.2-10) and (4.2-1 1 ), the finite 
element stiffites.. relations. equation (4.3-9), are wmbineil into a stiffiirss relation 
for the entire structure 1s 

whcre the matrix [ K I -called the composite stiffness matrix -has elements 
consisting of wins of tlie elrtnicnts of tlir fiuitc cleriimt stiffwss m;ttrices I K ' l J .  

Equilii~ritirn is imposed on the struc?lirt by rcquiriiip the coinponcnts of total 
nodril fcrcc to vanish at each modc. ix.. 

I IIL conipositr' stift'rws rcl;itiop (or rhr striictilrc follows as 



h) The strain energy stored in the structure as i result of the elastic deformation {S  1 
is given by 

i) For each structural node (e.%, the ith structutal node) a ririd body m d e  shape 
matrix [$I describes the nodal dispIacement rate {iilt} duc t o  rigid body motion 
of the node relative to any chosert poilit as follows: 

where 

re-3 3 

and, if 
C6.i  1 = 

(4.2 - 1 6 )  

then - 
1 (3 zi 0 0 -Pi 

0 1 -zi xi 
si 0 Pi 0 - - 

and dko, dipJ, d i 0  are the components of position and exo, Ok,, 02, .ire the 
components of lotabon at the point relative to  the Inertial h i s  Sygtem. The 
velocity ofa point ittterior to the finite element-analogous to that of cquation 
(2.3-16)- is fohnd from the ilisplxement relation (item c) as follows: 

where 



witerrin m is the number of ndcv on t!* 3th timite e1eme:tt ami ttw nudes are 
numbemf sequentially starting with i' I 

jl The mass matrix describing the ir.ertia properties of the a& finite element. equation 
I I . 7  of refere. x 4-3. is called Fierein the nodal matrix anr! is defmed as 

dewribzs the m s  density distribution of the clement. It shmld  be noted that the 
. nc.,'-! mass matrix need not be a diasonal matrix. 

Lj The kinetic e n e r g  of the 
-tile Inertkl Axis Sy: XI in item ri), is given by 

finite element, since { B'} is th= velocity relative to 

(4.2- 19) 
I<" = L f {Vs~':p~J{V"~dV. 

2 J -  v" 

tlence, whsiituting equatioal (4.2-17). it foliows that 

n e  to1 .,I kinetic energy of the sfmcturt'-i-* sii~n of the clcmrii1 kinetic 
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(4.2-2 1 ) 

is the rigid body modeshape matrix for theentirestmcture havingn nodes. 

I)  be r d  thne tenns ofequrtim (4.2-~) rgrrsent the d r i v e  Iti'etic 
the aircraft, a quantity also described br equation (23-8). This quantity is mini- 

System rehtive to the Inertial Axis System, figme 2.3-2. The componenk of Vc 
and arc contained in thr. elemenis of sk hen-. letting I be exprrssled for 
rigid body motion about the cecter of mass, the dative kinetic is a mini- 
mum with respect to the elements qf(8') if 

of 

mized asin stction 232 to determine vpnd is-& VeIOcity of the Body A+ 

(4.2-22) 

This m a l t  is the f ide  element analogue of the exact mean reference frame con- 
straint conditions, Le., equations (2.3-1 7). Introducing the ayproximtion of 
section 2.3.2.4, the mean reference frame constraint conditions, equations (2.3-18). 
~ ~ X p R S S t X J S  

and the rigid -- body - mode - shape niatrix is taken to be independent of timr (Le., the 
coordinates Xi, Yi, Zi. equation (4.2-16), -.re constants) so that equation (4.2-22) 
follows from equation (4.2-33 1 by differentiation with respect tc  time. 

When the mean refelence frame constmint conditions 3re satisfied, the kinetic 
energy, equation (4.2-20). rduces to 
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Cnl = 

k I 

I 
I - Izx 3 2  - 

(4.2-26) 

In dewlopins equation 44.2-23) from rquahon (4-2-22). the rigid body mode 
shape matrix is treated as being independent of hme. This asunrptim is identical 
-with thc assumptions made in obtainins equations ( 2  3-18) from equations 
fL.3-17). Hen- the anwnption is seen t o  lead to moments and pmducts of inertia 
which ace treited ;IS indendent of time-a result whicir was e\.alu;lted in section 
1.3.1.5 for the cjsff whcn rigid body modes are evaluated in the two cases: 
(1  ) a steady referme tli@t cmdition and (2) an unsteady perturbtion ?bout 
the reference flight condition. 

4- 2- 2 2 Enire clcrmwr appm~riniatiom mid structural reference fmmc -F:do approxi- 
mations are inrroduced when the finite dement method is applied to the FLEXSTAB system. 
fie f i s t  is inherent in the Ilnite element method and stems from item (c) of section 1.1.2.1. 
\\lien a structure is continuous. the displacxmcnt field which describer its deformed shape is 
continuous and has continuous partial derivatives with respc,r to sFatial coordinstes- When 
tlte stiucture is rcprcxnied by finite elements. the continuous displarvment field is approxi- 
mated and replaced by one which, in -rt.nenl. will haw discontinuous spatial derivatives a t  
the houndarie cf th:. tinitc elements. 

The second approsirnation is not inherent in the tinite element method but is introduced 
-.vlisn the nwthmf is ;ipplied to FLEXSTAB. This sr'cand approxiniation is introducnl whcr 
the opcritions of item ( d )  of section 4 - 2 2  I are c a m 4  out. \men the state of strain is can- 
puted from the displclcenicnt functions and when tlir state "f stress is computed. thew com- 
putations Xr; h a d  on the well-known approsirnations of the classical tlicory of elasticity. 
As noted in sectinn 4.2. I thew approsirnations requirc that rotations of ths siructitrr* 
iiiieasitred rclatne to the coordinate systcm usr.J i n  descrihins the structuml theory- the 
ciructural rcfercnce frame ) must he very sninll. Motions of the strur-tmd reiersns~ fmrnc 
rrl.itive to the structure. Iiowever. arc arbitrary provided tliz relative rotations liave tlhe 
rcquircd t1cgrc.e oi' ~tii:tlIne~-,. 

(4 .2 -27 ,  



wbere d&,, dye, d&, are the components of tmdatioo and O h .  @yo. e&, 
components of rohtion OF the shnrchire &tiw to the structural reftrence frame. The rigid 
body nodal displacement components. equivalent to equation (4.1-27), are dexribtd by 

the 

(4.2-29) 

where mhtrix [&j] 2s the rigid body mode shape matrix for the structure defmed by 
q ~ a t i ~  (4-2-2 1 ) 

The sigiii6can.x of the rigid body displacement. q r *a t ion  W2-29). can ncw be 
described fomdly by considering two sets of nodal displacment components. i6 } and (6 '}. 
rrbtid as follows: 

The quantities (&)and { a') are the result of two different deformations differins by the rigid 
body disphcement described hy equation (42-29)- The rigid body displacement, however, 
is taken to tu that 4 thc undeformed reference shape of the aircraft relative tc which the 
components of ( 6 )  and {a'} are measured, tigum 4.2-1. This deformation is i l lustntcd in 
figure 4.51 assuming that the elements of ( a }  and ( 6 ' )  contain only translarion camp 
nents of displacement at  the nodes. The two sets of nodal displacements are, therefow, 
given by 

and 

4-1 3 



when.(s') contains die coordinates of the nodes in the deformed structure while {X)and 
( X ' ) m  the cmordinates of the nodes in tSe two undeformed sham of the structure. C and 
C*. ciiITerin_n only by the ri$d body displacement. IJnder thew assumptions. -dins the 
componpts of( 6)and { Q*}anct the interpretation of eqmticti (4.2-29). equation (4.3-29) 
beconies 

is') - ix> = [ & p R j .  (4.2-3 I 1 

Eqmtion (4.1301 is snerated by subtnctinp equation (4.2-31 1 from tile identity 

- - 1  - {s J = { x * j  !- 

This ogeration demonstrates that equation (1.2-30) can be in rerpreted 3s relatin, - two xts 
of no&! disphrlmient components dift;rFjng by n j d  M y  displacement of the uncieformed 
siiipe of tne structu? rehtive to yliicli (6)3nti{6*)are mzasumi 

x 

+. i 

Deformed shwe 

tlndefonned shape C 

FIf ' iG'E 4.2-1 -2lGID BODY DISPLACEMENT OF THE UNDEF0RA:'ED 
REFERENCE 'SHAPE OF A STRUCTURE 



The small rotation approximation is shown to be contained in equation (4.2-30) by 
considering the orthogonal coordinate transformation involving ishitesimal rotations, set- 

tion 4-7 of reference 4-1, v i z ,  

where( X)and (X')contain the coondinates of one set of node points but in two different 
axis systems (vis., X,Y,Z and Xs,Ys,Z') and( do}, mstaining three constants for each node 
point, re-=nts translation of the  origin of tile x',Y*,z' system relative to  the X,Y,Z system. 
Letting [ E ]  and do)be such that the coordinates( X' in the X'.Y*J' system are identical with 
the coordinates I X)in the X,YJ system, the X',Y',Z system is made to be fixed t o  the unde- 
f m e d  shape C'. The result is an expression that can be made !dentical with equat;on (4.2-31). 
Equations (4.2.3 1 ) and (4.2-30), therefore, contain the same order of approximation as the 
coordinate iimformation; namely, the angtes of rotation are infinitesimals. 

An important observation to be made in the above is the following: In equation (4.2.31 ! 
both { X) and { X') are expanded on the X,Y,Z system; while, when equation (4.2-3 1 ) is con- 
structed using the coordinate hansfonn?;i ,n.{XI k in the X',Y'z system fixed to the 
undeformed shape C' while{ X)is in the X,Y.Z system fixed to the u n d e f m e d  shape C. That 
this difference in coordinate systems produces no ckmge in the expression for equation 
(4.2-29) follows from the analysis of section 4-7 of reference 4-1. Ths analysis shorn that if 
the coordinate transformation of section 4-7 oi reference 4-1 is applied to either equation 
(4.2-29) or equation (4.2-30), the forms of these equations are unchanged. The elements of 
{ S')anC {6}, therefore, can be regarded as expanded on either coordinate axis system with no 
change in the form of equation (4.2-30). This equivalence is uscd in the following where the 
X,Y,Z system is taken to be a mean refcrence frame while the X',Y',Z' system is taken to  be 
a s t ructud reference frame. The structural reference franlc is used as a coordinate system in 
describirg the elastic properties of a structure. 

Throughout the remaindcr -f section 4, the Reference Axis System is used intercharrge- 
ably as a mean reference f r m  and as a structural reference frame but only whta using it as 
a basis Cor expanding the components of nodal forces and nodal dqdacements. This inter- 
changeability is valid because of the observation in the preceding paragaph. A separate 
coordinate systcm, identificc' .?s il structural reference frame, is not required and is never 
introduced. Nodal component; of fmce and displacement will be expanded using the Reftr- 
ence Axis System as a basis; a t  times the RefmnctJ Axis System will be a mean reference 
frame, whilc i t  other times it will be a structural reference frame. 

In sectior. 4.2.2.5, the elements of ( B  )are expressed as 3 linear Loml-lnation of the 
elements of(6'). Equation (4.2-30) is then expressed 3s 

where the transformation involvcs ortliogorial tr~insformatiaiis introtlucing :irhi .rxy tr;insla- 
tions but only inlinit~sini;rl rotation<. Using tlic conccpt of virtual work. tlic ;ippIit:d nodal 
forces ;ire found to hc tr:insforri!.d :is 

,- 

{ c : -  1' = I - : ] - { .  j (4.2-32 



Tie two pwtzdins equations tiray appear to bc only coordinate tnnsformatiow. but. from 
i~ir a b r e .  it is clear that { 6') and ( 6 1 ;IN the mutts of two physically J,ffzrent diq~hce- 
nieats. In tile following ( Q  } and { Q 1 will be shown t a  wprcjcnt two ptiysicatty dif.erent 
sets of nodal forws. niis physical dilierrnw depends on the partictilar linear ~ h t i o ~ h i p  
cliosm to relate the rlsinents of { B }  to the clzmentsof { & I .  There are any n u r h x  of 
choices for this linear relationship-thm of them being shown on pages 4-6 of I-rtferenlu 24. 

If equation (42-30) is substituted into the composite stiffness whtirn. equation 
(42-14). it follcws tliat 

E Q )  = tKl(C&,l~2~ +- f 6 ' l i  (4.2-33) 

= tKl{6') 
s 

The product of the stifitzess matrix onto tlir rigid body mn'c shape matrix vmisiies bemuse 
3 rigd body displacement of a i;:xctue. \vIien it is 3 fw: body, wquires no cha.i$s in the 
applied nodal forces. i e.. 

Also. because the stiffness matris is synin-etric. the mnspose of the above equation ICJ~S :o 
the folhnving rtsprrssinn: 

1nt;oducii:g tile tmnsforniation of tlir nodal force, equation (-12-33 1. into eqation (4.2-33 1. 
it follovvs tha: 



Consider fmt the kinetic energy, K. with the velocity expressed for an observer in the 
body fixed axis systems. equation (2.3-16). Le.. 

(4.2-36) 63 q -t + + 2 x $ + -I-(- + w x r + g l p A d V .  
6 t  d t  

V 

When GJdt and 0' are taken so that they minimize the relative kinetic energy, this 
expression becomes (4.2-37) 

The final term of this expression may be replaced by its fmite element analogue, item (k) 
oi section 4.2.2.1, to obtain the followinn form for the kinetic: energy: 

Consider, now, the virtual work of the applicd fore.-equltion (4.2-2). This qumtity 
is expressed in terms of fmite elements using item (e) of sectio!i 4.2.2.1. The virtual 
displacement of  a point in the structure is given by equation ( L - . 2 4 ) ,  Le., 

-t (4.2-39) 6r*= 6;; + 6 4  x + 6 3  

where 

is a virtual rotation. The virtual work of thc a,)plied forces ia now expressed as rollows using 
equations (4.2-2) and (4.1-39): 
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is a multant couple at the center of mass. Introducing the displacement relations, equation 
(4.25). the virttai work is obtained in terms of applied nodal forces, equation (4.2-1 3). as 
follows: 

where the elemcnts of {e} ate the nodal forces due to  surface tractions, v i z ,  

with the sum over all elements having nodes at the ith structural node. 

Hamilton's principle in the form given by equation (3.2-3) is now expressed in terms of 

(4.242) the finitc element method as follows: 

4 d 

tvhsrc { A }  is a niatris ofsis Lagracgc miiltiplicrs rcplachg the vccton X I  arid X-t in 
qua t ion  (4.2-3) and multiplymg thc Imstraint  conditions in the finite t'lcnicnt forin givcn 
by equation (4.2-23!. 



(4.243) 

Tlir hgrange mutriplien may be so chosen tliat squatim (4.343) can be expressed as a set 
of equations. viz.. 

d2$* 3 + M- + Filg = F 
c, dt2 

(4.2-44) 

and 

Introducing thc kinematic approsimation OC section 2.3.2. i . i .c . .  ignoring variations in 
the moinents and products of inertia, the variational quantity 

is ignored in equatim (4.?IS).  As a resiilt the first tern of this t.qr.--.-.,ii may he irtegntcd 
hy parts with rcIspc:t to time to obtaiit 



-L 

The variation 6S2 vanishes a t  the instants of time. t 1 and tz; hence. tlus result is used to 
write equation 14-24)  ;is follows: 

--L 

Now, because the components of 6G? Cdii now be chosen arbitrarily, it follo\vs I?iAt 

(1.2-47 1 

C 

The kiiiemattc approsimation of section 2.3.2.4 is seen to eliminate the mechanical c o u y h p  
betwzen the elastic dzformation and the rotational !notion of the aircraft. This concluion . 

folio\vs from the fact that equation (4.2.47) is siniply the vector form of Euler's equations 
of motion for a rotating rigid body. equations (5-34) o f  reference 41 ~ 

4 3.3.3 Eidiiurioti OJ rhr Lagrmge nur!fipliers.--,\c pointed out in section 2-4 of 
rc~cwnc'z 4-1. the Lagrange n!ultipliers have a physical significmce. The term containing the 
Lagrange multipliers in equation (3 .136)  can he identitied with forces of constnint. If 
equation (3.2461 is premultiplie6 by the tr.inspose of the rigid body mode shape matrix, 
quPiion (4.2-11 ). the trrnis on the kfi vanish by virtue of equations (4.2-1: 1 arid (4.2-34) 
yielding 

(4.248) 
c ? , l T ~ ~ s ~  = - C M l { X )  

where [id] is thc tctal mass-inertia matrix of equation (4.2-26) and the operation on the 
!eft yields the resultants of thc 
LA., 

surface forces at the center of mass of the ailcraft, 

wherc. for the clioict. d [ (16 1 shown :,e quation (4.24 6). 
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The Lagrange multipliers are found from equation (4.248) as 

€1) = - [Ml-l{Fcl (4.350) 

Equation (4.2-501 can be interpreted as showing that the Lagrange multipliers represent 
components of rigid body acceleration relative to an inertial referencz frame. If  the inertial 
reference - frame is taker1 is be the Inertial Axis System. then 

.. (4.2-5 1 ) 
(1) = - {B’) 

where { 3’) is tne matrix defmed by equation (4.2-1 6;. Tlus is a correct interpretation, how- 
ever, only at the instant of time when the Inertial and Body Axis Systems are coincident. 
The Lagrange multipliers, therefore. must be interpreted as representing components of 
rigid body acceleration relative to a portable axis system of the type introduced by section 
2.3.2; specifically, the inertial reference frime is taken to be a nonaccelerating and non- 
rotating axis system coincident-with the Body Axis System at any instant of time under 
cunsiderdticn. This inteT.etation <if the Lagrange multipliers leads to equation (4.2-48) 
being viewed as rigid body equations of motion based m a kinematical descriptit~ consistam 
with that of section 2.3.2. L- F 

Ccmbining equations (4.2-49) and (4.2-50) with equation (4.2-46), the structural 
deformation of t t s  iircraft is fount! to be governed by the following expression: 

(4.2-524 

where 

[ P I  = m : - C m S l  c i ,  lcal-1Ci,3T1 (4.?-53) 

The matrix [PI, a singular matrix, is seen to incorporate the inertial forces (including the 
gravity forct) This matrix incorporates intc quation (4.2-52 b the forces of constraint, 
;.e., the find term of equation (4.2-46). This term is now written as 

and represents forces asually interpretcd as “inertial ,4icf’’ forccs. Also, cquation (4.7-521) 
can be written as 

c 
[KIEs) = [ . - J ( { Q L ’ l - [ n 6 1 { i j l  (4.2-52b) 
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The comiiients following equation (4.2-32) in section 4.2.2.2-are borne out by the 
above results. The two sets of nodai force compo:ients ( Q  } and { Qs 1 3'3 related in the 
above as in equation (4 2-32) with the transformation matrix [TIT replaced by the 
transformatioii matrix defined by equation (4.2-53), Le., 

CQ! = i21CQsl .  

Also, there is a physical difference between the forces ( Qs 1 and t\e forces { Q ). They 
differ by the inei rial relief forces, i.e., __ 

bes the inertial iiodal forces arising from rigid hody 
IS the result of h:av;ng chosen the mean reference 

tion (4.2-23), as the Coiistraint conditions to be wed in 
thc foim shown by equation (4.242). 

o the coniments appeuing in section 4.2.2.3, [he elements of the 
dd displacement co?.nponen t rela tion given by equation 
the cons:raint conditions to  the nodd displacument 
lationshiq is found by premultiplying the mtitix I [m61 

onto equation (4.2-30) and by employing the mean referznce frame .:onstmint condikhns, 
qudtion (4.3-23). The resdt: is given by 

and, on wbstituting this result into equation (4.2-3>), t l x  twqsets of nodal displacement 
componei 1 IIY related as 

i 6 ;  = c P I T r a ' l .  
- 

This resQlt ensures thpt the undeformcd shape C, shown by fiqure 4.2-1, viz., the refeience 
shape dat ive to bvhich the disp1ace:nent components of { 6 } are measured, is a mean frame 
of reference: The undeformed shatn C', vit. ,  the reference shape relative to which tbe 
displacemmt 
requirement t h 2  C nnd C' dtffer it inost by an arbitrary, but infinitcsimally small, rotation. 

:?ontnts of (6') .'re measured, is, as yet, undetermined outside of :!E 

hi iising Harnilton'i princ:ple to derive the equations of niotion in th: form given by 
equ:ltions: (4.2-44), (4.2-47), ;:nd (4.2-52), the form of the deiived cquations of motion is 
seen to depend on the choice of the constraint conditions. The derivation make5 i t  clear that 
the forin of thz equations d motion is not arbitrary once the conditions are chosen for 
cktrrininin!:: the elements of ( B) i n  equation (4.2-30). If, for example, the elements of { B }  
arc set to /e10 and tlir undcformed sliape C' is constrained to selected nodes or' the strii ture 
thc Att:,chrd Axes uf wction 7.1 .J of rtfercnce 2-41. then the form ol the equations of 

niotion will be similar t o  tliuse above but the physical significance o f  tiit' matrices, pwticu- 
lady tiiat of the inc)tioli variablcs, will b: c!langcJ. 

\ 
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€he only arbitrarinessremairiing in the formufation, aftcr having chosen the mean 
reference frame constraint conditions to be the conditions for determining the ekments of 
1 B}, is the undeformed co-'figuration C', figure 4.2-1, relative to z hich the nodal displace- 
ment components {6'} are measured. in the FLEXSTAB system, thc undeformed shape C' 
is determined by choosing six nodal degrees of freedom, repestrtec! as the elements of 

shape fT' is Lied relative to these nodal degrees of freedom; thus, because C' is arbitrary, 
the particular choice of the six constrining nodal degrees of freedom { 6 ~ }  is arbitrary. 
These operations are described in section 4.2.3. I .  

5 t. which, if set to  zero, constrain the structure from rigid body motions. The undeformed 

4.2.3 Equations ol Motion for the Steady Reference Flight Condition 

Under the assutnotiori of steady motion, a.Q ' h e  depmkncc apparent to an ohserver 
in a body-tlxed axis system vanishes. The equations of mction (equations (4.2-44 1, (4.2-47 
and 4-2-52;; I ten reduce to the following: 

(4.2-54) 

and 

0' 
(4.Z") 



\ 

matrix evaluated for the reference ilight 

(4.2-58, 

. 
w;icre the rr i r r i o s  ;lopearing o n  the right arc paititions of t!ie stitfnr' s i m t r  is appearing in 
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The stiffnss matris I K66 I is nonsir.gular and may \-. inverted to obtsin the flexibility 

(4-2-60) 
of the cwnstmined structure as follows: 

f5') = CCJIQI 

--m&{6 '}m the rtodal dispbcemznt components nreastrd relative to a structural reference 
fnme fixed to the structural cmnstraints. lntroduciy the coord;nate tmnsformation giwn 
by equation (4.2-30). eyuAon (4.260) is espnrsrtl AS - 

(4- :4 1 1 



The matrix [e] 1 is tcrnred the “free-body ilexibility” matrix and. like the stiffness niatrix 
[KI for the structure as a free body. is kgular. The post muitiply by [PI 1 introduces the 
inertial forces. As previously notL+. t h s  h :ern& inertial rekf. 

42.4 Equations of Moth. the Unsteady Pefiur’mtion Flight Condition 

Equations (4.241. (4.247j. aa I (4.1-52) will now tx specialized for the &se of 
unsteady pertmbation motion relative to  the steady referent- motion of s e c k C  42.3. 
Lettins 

d;; - 3  + ? .  (4.24 5 )  
dt- = I  -PI 

an2 

leads to the fdIowing perturbation equations of motion: 

and 
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wliere the columrls ot the transformation matria 166 I are the free vibration mode shapes h r  
the structure and the d e g e a  of f d o m  { u}are lhe amp:itdes of the inode shape 
deflections. The free vibration mode shapes are solutions to the eiptnvake probletF8 poKd 
by tlh: strtic'tuml equations o f  motion. cquation t4.2-68L when the applied nodal for-= 
{ @)pare set to ze- and when the structural motion is jPilltlKd to be harmonic:. Le.. 

w!iere w is the frequency of the harmonic motion. equation 1 1 I - I I 1 of  refemace 4-3. The 
tmnsfornwion matrix. q u a t i o n  (42439 ). tliemfore. is given hy 

(4.2-7 I 1 
c q  = C ~ b o ~ l , f a , l z , * - * 3  

w h i x  { &}j is the jth eigenvector tor free t-ibratioit mode siiapet) IIa\hg the natural 
frquz:!cy w-. J 

- 
Ibe free vibration mode shapes are found to have the following properties: 
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Equation (4.1-76) govern the structural -notion described in terms of the pneralizrd 
coordinates { u}p: and. when the motion is transformtxl t o  the coordinates { 6}p by 
equation f42-69). the motions rcpwscnted by quat ior .  (4.2-76) are identical to those 
r e p e n t e d  by equation (4.248)-nothin,g is lost by the transformation of cmordinates 
intnducrd by equation (6.449) provided (06 I contains the complete set of modes. 

4.2 4 2 S~nit-trtrd equutimts ofmoriott h remu offlexihilirj-. -When the structural 
equations of motion as &en by equation 14-2-68) are multiplied by the flexibility matris 
IC I . equation t 4-2-60 ). t l izx equations k ~ . m  as follows: 

(4.2-77) 

IntroJuciiig the coodinate innsformation. equation * $2-30 ). detcmiining the components 
of { B) using tile approximate m a n  asis system constraint md i t ions .  equation (4.2-23 ). 
IL~ds  to structurd perturbaticm equations of motion expressed in the foIIowing form: 

44-2-78) 

z 

where the flexibility matrix. IC1 1. is the f ree -My t?exihility niatnx appz-Iring in equation 
(4.244 1- 

4-24 ,- Rr.s;~:~ll7c.~-i3;l;r~. jbrmiltrriotr. -If the siructilnl equations of motion given 
by q u a t i c  .. 44.2-76) vvie used in the FLEXSTAB system amlysis without nidilicdtion. 
then little o r  110 advantap \voulrl nc'cn~e fmni havinginrrduced the tnnsform;ition to 

frce-vibrativ!i modal coodinate:. i he number of elements contained in { u 1 fix.. the 
number of dyn3mir. strudiiral degrees of freedom 1 is only si1 ILSS t..dn the tiunilwr of 
Gtemenrs contaiwti in { ii ) : havihy tr~nstbrmed f l i t  prthlem t o  tiie p w a l i z e t i  umrdinates 
{.I}. the only simpiificiition ach;ewd is the eliriiinatioi oisik rigid-body cicgn.trs of freedom. 
I hc. pricxtr?. m5on  for csp:~ sing the r;+lem in tcrnis of free-vibration modal ccmr,liiiatci 
is to allotv an snalyst to comparc the orders o f  inagnitiide of the tci :!is in the equations of 
mot; -11 rr:id simplify them by c'limiiiating negli$hly sniall terms. 



(4.2-79) 

and 

where { u I} are the m d a l  degrees of fn-tuloni wl!osr: natunl htquencies are sniall a d  { u?} 
are the n i d a l  d e g m  o i  freedom whose natural inquziicir3 are large. 

n i e  dynamic (or mod21 inertia 1 ternis { c l }  may he neglected as negligibly small: even 
so. the nida l  d e g ~ ~ ? ;  of  freedom { ui} may haw pronounced effects on the characteristics 
of 101- Lequenc> rigid-bdy n.id structural n:otions. Tlie second of equations (1.2-79). 
negtr'ctiiig { G - }. descri~m the iollowin_g yusistatic elastic de11L 'c t -  ions: 

- 



tail suurtace 

Locus of section 
mars centers 

FlGbRE 4.2-2.-EL ASTIC AXIS AND LOCUS OF SECTIC.?' fi?ASS CENTERS OF A 

TYPICAL HORIZONTAL TAIL 

Asuniing chat 3 lo\v frequency unsteady loading is ch~r~cterizt.d hy a frcqur'ncy w. the 
equations of niution for the high frequency iiioJal coordin:itcs. ir . .  

w k r -  e 



nie flcsibility associated with the high frequency modes. equrttion (4.2431 1. may he - 
awiput:'d as a midual. The total tlcsibility of the structure as a frt.t. body. viz.. [ < . I .  
de fit1r.i hv equation (-4.244). is equal t o  the %\ibility reprexnlcd by the complete wt o f  
f ree\  itir,tion tildes. Le.. 

and 
- (6 c 

2 -p = CC,l I\ - : Y ; p  



4 . 5  Siniplitication Usins tlir Symmetry of  an Aircraft 

Using the gcmmetric. ctructural. and ineitial symmetq  of  an aircraft. the structural 
equations of motion an. separated into symmetric and antisymmetric forms. The stiffness 
i-dation. qua t iun  t4.2-I 4). is e s p n w d  as fdlows: 

(4.2-86) 

The nodal displacements ({ l i }s  and 
art' esprttsscd for node points on the plane of symmetry and oii tllt right-liand side of  the 
s t r u c t m  only. figure 4.2-3. 

and the applied nodal forws C{Q}s a i d  { Q}A) 

For the 5 )  i:inir'tnc form. the nodal displacements and forces art- assunird to  btt 
symmetric functions o f  the Y-xordinate. Ar node points on the plane of symmetv.  nodal 
displacement components corresponding to Jy. Ox. 02 are zero and d o  I! i appear in  
Undvr deforniation [!le plane of  symmetry may stretch. hut it rennins a plane. The 
coniponents of nodal force comsponding to Fy.  htx- B!z are set to  zerc a t  the plane of  
syinmetry and are removed from { Q} in forniing { Q}s. A[ node p i n t s  off the pl:tne of 
synmetry tho following relations are assumed satisfied: 

R 

1 .... 

. y 

.- 
I 

- . .. .. _ .  . ... 
. _  
. .. . 

. .. . 

.. - .  . .._ 

(4.2-87) 

, , . -  -- - ~ -L 
FIGURE 4.2-3.-PLAh'E OF STdUCTURAL SYMMETRI' 



where the subscripts R mi L denote evaluation a t  the it1' node on the right and the 
synimetricallv located iiode on the left. figure 4.2-3. Tlie aircraft structure takes on a 
symmetricaliy deformed shape. the net forLr on the a i r m f t  in Ydirection is tern. m! net 
niommts &out X- and Z-axes vanish. 

For ti c antisymmetric forni. the components o f  nodal displawment d y .  dz and fly 
and compments of nodal force Fx. Fz and M y  are set to zero at  nodes on thr plan? o f  
symmetry and do not appzar in { d}A and { Q}A - U nder antisymmetric deformatico. the 
planc 0: symmetry warps but does not stretch. At nodes off the plane ot symmetry thc 
following relations are satisfied: 

and 

L 

. -  
- F, 

FY 
-FZ 
MX 

1,  

-M - 'il 
M, 

L 

R l  L. I 

(4.2-88) 

L 

The structure takes cm an antisymmetrk slhpe, the net forces ,n the X- and Z-dirtctions 
vanish 311~1 [lie m t  mument about :he Y-axis is zero. 

L 4ng tlie above arrangement. the equations of motion in sections 4.2.3 and 4.1.4 are 
separated into symilietric 3 r d  a' iL;!Tinietric Corms. In lieu ot a A S l e  set of equations 
euprcssed in tqtrms of n ~ d a t  rlisplacsment ant1 force conipnnentsat noJrs  on hotti sides o f  
311 aircraft, two sets o f  tlir' structural eqaations cJ motion are 0ht.t'nr.J ;II 'c'rms of tlie noc1;rl 
quantiticb on [he place of\yinmc.try mtl on the rig!it iiand side of the L' .raft only. 

4.2.n 1)eforniation of the Aerodynamic Surfaces 
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At the mean surfaces of tnin bodies, equations (4.2-89) are expressed in terms of thu 
locall thin body coordinate systems, and at slender body surfaces equations (42-89) are 
expressed in terms of the Reference Asis System, figure 4.24. The lhearized boundary 
conditions have the fallowing wrms: 

and 

and 
sl encler bodies  

(4.2-90) 

(4.2-9 1 ) 

x -  

i-:y 
FI TURE 4.2-4. ELASTIC DEFORMATION OF AERODYNAM/i'SURFACES 



In the E LLXSTAB system, elastic deforliiation of the thickness shapes of thin and 
slender bodies is ignored. TI:e elastic defermation contained in equations (4.2-90) ar 
(4.2-91 ), therefore, iq  solclq a corsequence of rleformatim to the camber sliapes. A s  a 
result. the elastic det'ormatim of slender bodies may be e*.aluated at the slender body 
centerline ir, liev of the slet der body surface as shown by figire 4.2-4: thus. tliz elastic 
deformation of slender bodies is represented as shown by figure -1.2-5. 

7- - - -  L I 
eE.... A. 'N+1 A \ -- - T N  I 

Y 
Z N + ?  

FIGURE 4.2-5.-ELASTIC DEFORMATION OF SLENDER BODY CENTERLINE- 

4 .26 .  I Rora;iorrulclefor-r)iutiorr. -7 iie comporients of the clastic rotation appearing in 
tqr,ario is (3.2-',c)) an> (4.2-9 I ) ar2coniputed from the ilisplacr.ment licld d using the 
n;dtrix tquivalcnt of OE = I f 2  V s J, i.e., 
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Under thew conditions the mtation at c point is equal to the deformation gradient in the 
?&direction: thus, the surface rotatioil at the ath element is 

and 

~ For st-nder structural bodies, which detonu in a beamlike manner, the shear strsins TX ,ind 
~ X Y  ?re issumed ' 3  be zero so that: 

2 

~ -- .__- . -  

ady adX 
--. + - 1  - 
-%-. ~ .** - ax - a E,- ax aY - 

ad., 
- 6  and - - - -  - --- 1 -  

Thus, thc ceiterline rotation at a point on the ath element is 

where 

(4.2-95) 



4 26.2 Translational defortnnrht rate.-The elastic displacement r3tL , contained in 
equations (4.2-90) ai:d (4.2-91 j are found directly .lorn the displacement seiatim- 'r- r 
slender bodies the ehstic displacement rates -*I% as follows: 

iv here 

where 

Nay2* 

(4.2-96) 

_. 

YM = 0 

ZM = 0 -; 
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slender bodies 

thin bodies 

(4.2-98) 

- 

i) -- I 

slender? bodies 

(4.2-99) 

th in  bodies 

where Xhl(j) is the coordinate of the jth control point on the Mth slender body and XN(i). 
Y d i )  are the coordinates of the ith panel centroids on the Nfh thin body. 

The relations which yield the quanti ties { d * 1 and ( 8 *) as a result OF nodal displace- 
ments a t  all of the structural rbdes { 6). equation (4.2-12~, are obtained by combining 
equations (4.?-94) through (4.9-97) expressed for all the finite elements of a structure. The 
resulting expressions art: denoted as follows: 

and 

Equations i4.2-90), (4.2-91). (4.2-100) and (4.2-101) allow the flow incidence at ,.he aero- 
dynamic panel centroids to be related to the values of { d*} and { e*} 31 [lie pancl centroids 
and to be expressed as  follows: 
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The rate of change of flow incidence is given by 

(4.2-1 03) 

4.2.7 Forces at the Structural Nodes due to Aerodynamic Surface Rwsw 

The nodal f o r m  arising from aerodyr:amic surface p r c s u ~  are derived by considering 
the work done by the aerodynamic mrface pressure in .ti!forming the aircraft structure, viz., 

(42-104) 

- 

where S is the total acrodynarnic surface:. { Pl. is a pressure matrix with components of 
pressure expanded on the fidrerence Axis-Systern, viz.. - 

- 1  - 

- _- 

and { d} is the displacement matrix, Viz., . 

> 

As noted above. the eftects of elastic deformation on the thickness shape of an aircraft 
an. ignored. Eqiilttion (4.2-104). therefore. may be expressed in terms of airload, viz., the 
liit ng pressure distribution on thin hd;.-s, 

.,nJ ~ I I C  a,-;oJyiiainic load Fori dit.  cc:ltcrline o f a  slender body. When these quantities are 
t.\I~:r.ssctl in t e r m  of conipovcntc zspanrlcd on the local thin nnd slender body asis systenis 
of ;c.G-tioni 3.2.3 and 3.2.4, qtiatiori (4.2-104) beconies as follows: 
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swI 

F tx t) Y ..:x, .. 

L~~ 

body surfaces- 

- where! the notation of section 3.3 has been introduced and at thin body mean surfaces 

at t h i n  body 
CnP) E mean surfaces 

i 
at thin body 
mean surfaces Id 1 E T 

and 

... 

.while.at slender body surfaces 

and 

-. - .  . I at  slender 

at slender 
body surfaces 

The displacement relations. quctions (3.2-7). are readily ilsed to construct the 
elements of the dispiaccment matris { d ~ }  as follows: - 

kp= C”!;lisal (4.2-106) 
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where at thin bodies 

and at  slender bodies 

YM = 0 

z # = o  

Letting the aerodynamic surface of the ath structural finite element be given by Sa, the 
portion of the work represented by equation (4.2-105) which is done on the ath finite 
element, at a thin body finite element, is 

wa = $6 a 1 'IJ [N;lT{APjdS (4.2-107a) 

Sa 

a$ at a slender body finite element, is 

L i J  

where L;, is the centerline segment related to the atll finite element. 

(4.2- I 07b) 

As prcviously notcd, the solution to the at'rodynaniic prohlcni. section 3.4. is 
expressed in ternis of airloads at ari.odynaniic panels on t h i n  bodies and on segments of the 
slcnder body ccnterlines. Tlirse panels and centerline segments, however, nectl not coincide 
with the finite element surface areas Sa. Equations (42-1 07) must. tliereforc. be expressed 
as followvs: 
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(4.2-108) 

where Swi is the surface of the ith aerodynamic panel and the sum is over the aerodynamic 
panels on the ath fmite element surface, Sa, and 

(4.2-1 09) 

L B J j  
where L B J ~  is the length of the jth aerodynamic centerline segmetit and the sum is over the 
aercdynamic centerline segments on Lb. T h e  expressions are greatly simplified in the 
FLEXSTAB system. The airloads are either uniform or nearly uniform on each small 
aerodynamic panel and centerline segment and are thus resolved into aerodynamic forces 
applied at aerodynamic centroids of each panel and centerline segment, figure 4.26. They 
are computed .as follows: 

11 {APldS f 
(4.2-1 10) 

and 

_ -  

Plane normal to surface 
and parallel to x-axis 

FIGURE 4.2-6.-AERODYNAMIC FORCES ACTING ON AERODYNAMIC PANELS AND 
SLENDER BODY CENTERLINE SEGMENTS 
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where at thin bodies 

and at slender bodies 

The variation in the displacement conlponents over each aerodynamic panel and 
centerline segment is ignored as small and equations (4.2-108) are expressed at thin bodies 
as 

and-at slender bodies as 
--. 

(4.2-1 1 I ) 

(4.2-1 12) 

where [ N-f(i)l and [ N f i ) l  denote evaluation of the displacement functions, equations 
(4.2-106). at the aerodynamic centroid o f  the jth thin body pancl or jth slender body 
centerline segment. The steps leading From equations (3.2-1 08 and (4.2-109) to equations 
(4.3-1 I 1 )  and (4.2-1 12) involve apprmimations for the two finite element mtflods used 
in FLEXSTAB and described in sections 4.3 and 4.4. 

Eqiiation.i4.2-105) is the sun1 of the work done by tlir airloads at all of the finite 
elements on aerodynamic surfaces. Equation (4.2-105). therefore, may be espresstx! in 
niatris form i n  tcrrns r.)f quations (4.2-1 I 1 )and (4.2-1 12) as follows: 

' T  T A  k? = " ( 6 )  2 CP,I if,) (4.2-1 13) 
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where 

slender bodies. 

F m < i )  A ~ 

The matrix [€‘TI is obtained simply by evalzting the displacement relations given by 
equations (4.2-106) at the aerodynamic centroidsand arranging the mamas fh?’)] to 
obtain the following dation: 

=-CP,3lSl (4.2-1 14) 

where 

.es 

A Ldting (0 } represent a set of nodal tbrces. the following expression represents the 
work done by these nodal forces in deforming the structure: 
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This work is eqwted with that done by ihe airloads, equation (4.2-1 13), Le., - 

The nodal displacement components are independent quantities. I t  follows. therefon% that . 

the nodal f o m s  { QA} are equivalent t o  the airloads { 4 } if - _  

(4.2-1 16) 

This expression is the desired result; it relates the airloads at the aerodynamic panels and 
centerlise segments to  the forces a t  the stnictural nodes in the finite element method. 

4.2.8 Propulsion System ForLxs and Motions 

Two additional transfonn&ons relate concentrated loads and motions at the mounting 
points 2f the propukion system to the nodal forces { Q} and norlaldisplatxments { 8 ) .  In 
the FLEXSTAB system, thGpropulsion system consist. c f up to ten engines supplying 
thrust and having rotting parts. The mounting points are assurned.to be at the centers of 

C -  mass of the engines. A groscopic couple Mi IS assumed to  act at e& mounting point, but 
the thrust vectors Ti may be distributed along a slender structural body represenfing an 
engine. Translational displaements at the points of applied thrust are expressed as 

(4.2-1 17) 

niis expression is obtained by evaluating cquaticn (4.2-1 14) ai the thrust application point 
The rotational displacements at the mounting points are esrressrd as 

(4.2-1 IS) 

-L - 4  

and this result follows by applying the operation 0 = 1 /2 (V x d )  to the displaccment 
components of equation (4.2-6) as in the case of equation (4.2-92). When the rewlt is 
evaluated at the engine mounting points. equation (4.2-1 18) is obtained. The work d m e  at 
the structurdl nodes is equated to the work done at the thrust application points to obtain 

where { T} is a coluriin matris of tlirust rompone:its expanded on the Reference Axis 
Systeni and 



-<where { @) is 3 column matrix of gymsco@;ic cougle compqients expanded on the 
Reference Axis System. The nodal f o b  are now found as follows: 

(4.2-1 19) 

- 
A detailed description of the transformation matrix [NAF] is contained in w:ionc k3.6 
and 4.4.4 and the matrix { MG} is derived in section 6.2.1. 

4.3 INTERNAL STRXTURAL INFLULICE COEFFICI 

n e  structural matrices usxi in formutating the'structura~ equations ofmotipn in 
section 4.2 are derived in this section assuming that an aircraft st&ture may be represented 
as a collection of beams. The components of an aircraft configuration are classed as thin 
M k s  and slender bodies using the classification introduced in secti& 3 and the structural 
behavior of each body is approximated assuming it to behave as a beam. Each body has an 
elastic axis, figure 4.3-1, which is assumed to  deform by bending twisting. The 
derivation of the structural matrices is  based on the finite element method introduced in 
=&ion 4.2. The elastic axes of the bodies are divided into finite elements. and the 
derivation follows the approach of section 4.2 leading to the flexibility matrix, the mass 
matrix, the free vibration mode shape matrices, and the transformation matrices required to 
€orbnulate the structural equations of motion. 

FIGURE 4.3-?.-ELASTIC AXES OF A TYP!LA L CONFIGURATION 
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The derivation of the structural matrices is base& on the usua! beam theoryapproxi- 
mation, which assumes that p!ane sections of the structure initially perpendicular to the 
elastic axis remain plane and perpendicular to the elastic axis arter structural deformation, 
reference 2-1, pp. 106409. The consequence of this appmximation on the deformation of 
the structure is illustrated by letting be the position (relative to the elastic axis) of point 
P in a plane section, figure 4.3-2. Consider the point 0 on the elastic axis where the plane 
section and the elastic axis intersect. If the point 0 tindergoes the s ~ d l  rotation so and 
the small translation go, then the point P rotatcr tnrough the angle 6, and translates 
through the distance d = ro +go x; Under this approximation the deformed shape of a 
structure is seen to be completely determined by the deformation of its-elastic axis. 

Point on the structure 

Elastic axis 

FIGURE 4.32.-TYPlCAL PLANE SECTION OF A STRUCTURAL BODY 

Beam theory yields a valid approximation to the true structural behavior if the 
structure has appropriate geometry. For beam theory to be valid the dimensions of the 
structure in the directions in which its elastic axis is assumed tG bend must be small by 
comparison with the length of the elastic axis of the structure. In the FLEXSTAB system 
the elastic axis of a slender body may undergo beam bending in any direction; therefore, 
slender bor'ies are assumed to have small slenderne~; ratios. Thin bodies are assumed to bend 
out of plane bct are assumed to be rigid for in-piane bending. Thin bodies, thzreforc, must 
be thin and must have aspect ratios which are an order of magnitude greater thur their 
thickness ratios. Experience has shown that the beam theory approximation is sufticiently 
accurate for aeroelastic predictions if slefider bodies have slenderness ratios less than 0.15 
and if thin bodies have average t!tickness ratios less than 0.10 and aspect ratios greater than 
six a>d le_ssthan_twe_nty_!i,e.. o < AR < 20 assuming AR is based on span). 

The derivation of the required structural niatrrces begins in section 4.3.1 with a descrip- 
tion of the elastic axis followed by a description of the beam finite elements. The dcrivation 
then leads to stiffncss matrices for the individual finite elements, equation (4.2-9). These 
matrices are combincd following die method outlined i n  section 4.7.7.1 (item (g)) to form a 
composite stiffwss matrix for the structurc of an entire aircraft. equation (4.2-14). Section 
4.3.1 ends with a reduction of the coniposite stiffnes., matrix eliminating nodal force and 
displacement components which arc not relcvant to the dcvclopmcnt following scction 4.3.1 . 
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Most of section 4.3.2 is aimed at deriving the beam thr cry forms of the transfor- 
mations introduced in sections 4.2.6 and 42.7, viz., 

and 

{d*i =. CP,l€SI 

(4.2-1 16) 

These transformations, termed the aerodynamic panel transformaticns, are derived from 
formulas dewloped in sections 4.2.6 and 4.2.7 using the displacement relations for the beam 
theorv finite elements, viz., 

(4.2-5) 

where the displacement functions contained in [Nal describe the beam theory deformation 
shown by figure 4.3-2. 

The propulsion system forces are related to  the nodal forces of the bsam finite element 
method in section 4.3.3. Tlus section, therefore, contains a derivation of the transforma- 
tions developed for a genenl finite element method in section 4.2.8, viz., 

and (4.2-1 19) 

The nodal mass matrix [ m$1 is dzrived in section 4.3.7. This derivaticn is based on 
equation (4.2-1 8). viz., 

(4.2-1 8 )  

again. i:sing the heam theory displacement relations. When the beam theory displacement 
rclations are introu,mxl into equa1ioti (4.2-1 8 ) .  tlic distributctl mass inleriar to the t3ti t t .  
ct,wtxits is cqtiivaletit tn a systcrn of lutniwl nixscs. Formulas for tlie t.quivalent luniped 
~,i;\sscs are derivd i n  scctiun 4.3.7 along with formulas far computing the eicniwts of t l ie 
;ioc131 m s s  mtris f r o m  tlic SI r i i  of cquivalcnt Iiinil~ed liiasscs. 
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4.3.1 Description of the Elastic Axis and Beam Finite Elenents 

As noted in the preceding ap  WAR configuration is idealized as an aswmtdage d thin 
and slender bodies and in his section each thin and s1ent-h k d y  has the structurd 
characteristics of a beam. Each thin and slentier G y .  therefore, has an elastic dXis; and, as 
shown by figure 4.3-3. the elastic axes of these configuration components x e  joined at 
points termed “junction points.” The elastic axis of a slender body coincides with its 
aerodynamic mean centerline, figures 3-24 and 3.2-5, while the L .astic axis of a thin body 
lies in its aerodynamic mean surface, figures 3.2-2 and 3 - 2 4  nte  ciassification of ccnfigu- 
ration components as thin and slender structura bodies follows the aerodynamic classifica- 
tion of section 3 but aerodynamic thin and slender bodies may be subdivided by anv 
number of jurs ion  points along their elastic axes. 

4.3.1.1 Thin body dastic u. is.-As noted, t:w elastic axis of a thin bod!. is assumed to 
1;- in the aerodynamic mean surface. It is approximated by a sequence of straight ‘ h e  
scgments in figure 4-34. The points of comection are termed “segment nodes” and the 
elastic axE extends from the “refereno- junction point node” at  one end to I he ‘butboarti 
junction point node,” as shown by figure 4.34. The length of ?he ith segment of elastic axis 
on thc Nth thin body is denoted a< L( Ni): and abJitional nodes, termed “interior nodes-” 
may be evenly spaced between scgment nodes with the spacing - 

L(Ni1 a L ( N i )  2 cL +1 7-T- 4.3-1) 

Junction :.oints 

FIGURE 4,3-3.-GENERAL AARANGEMENT OF ELASTIC AXIS 
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Outboard junction 
Elastic axis 
segment nodes 

point node 

FIGURE 4.3-4.-THIN BODY ELASTIC AXIS NODES 

where aiNi)  is the n1imbr.r o i  interior nodes on the ith segment. Thin bodies are seen to have 
Four types of nodes: reference junction point nodes, outboard junction point nodes. elastic 
asis segment nodes. and interior nodes. The segment nodes are points on the elastic axis 
where i t  chanscs direction and where its stiffness changes. In all other respects the segment 
nodes are trcatecl in the saiiic way as intcrior nodes, arid t!ir portion of the clastic axis 
between a n y  two adjacent nodes is called a finite elcmcnt. The nodes between the reference 
and cutboard junction point nodes are nuniberd in  sequcncc increasing frclii one at t!le 
noJc adjacent to t l ic  reference junction point 11orle to 13 a t  tlic noilc adjacent to thc 
outbo;ird juiiction point iiode. This nuinbering sclimic is iiscd to systcniizc t l ic operations 
of equations i4.2-10) and (4.2-! 1 ) to forrii a conipositc stiffiless matris for each portioii of 
ii tliil1 b ~ t l y  bctwccn iidjiicciit rcrcrcncc ii11J oiitho:irtl jtIilCioi1 point !iotltls. 
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(4.3-2) 

-th I segment 

FIGUR€ 4.3-5.4LASTIC AXIS OF THE NTH THIN BODY 

The reference and outboard junction point nodes are points where the structural thin 
bodies may be joined to other components of a configuration. A t  junction points where the - 
elastic axis of a structural thir hod) is joined to the elastic axis of a structural slender body 
or another structural ;bin body having a different dihedral angle, the structure is assumed to  
contain a very stiff meinber aligned with the X-ask of the Reference Axis System (e.g.. a 
closeout rib, a tacclle wpport rib. or a k d  beam). figure 3.36 .  The assumed large stiffness 
of this fore and aft meniber tends to cause one of the directions of principal stress. section I7  
of reference 2-;,  31 the elastic axis to be aligned w i t h  the stiff structiird member. Tlic 'hstic 
axis always lies in the direction of one of the two mutually perpendicular principal stn'ss 
directions; hence. ;he tls& axis niust turn at a junction point of this typc to become nearly 
perpcndtcuiar to tlic X-direction as ~liown by figure\ 4.3-5 and 4.34  



Points of elastic 
axis rotation 

Thin body ehdic axis 

Nacelle support rib 

FIGURE 4.3-6.-THIN SQDY ELASTIC AXIS A T A  JUNCTION POINT 

In the CL IIX;ST:\B sv3tci.i. tlir stiiC iore arid aft members at junction p i n t s  are a u n i t d  to 
be prtrt-eitly rigid- Tfie st'grncnt of tlir elastic axis brS:iiii,e the terniinus of a structuml thin 
hody at a iuiict,on pc\i:it. tliewiore. must be perpeiidiculrlr t o  tlir XJirrction. I f  this mtric- 
tion were *lot imposed. tht' stiifiwss matris representing tiir structure would be singular. 

.At a juniticw poinr ndr:  IocatcJ between the inboard t id.. wfc re iu )  Jnd outboard 
juri .-tion points of a srriictural rliit! hody. wlicrc tlicw is  no change in the dihedral anglc. the 
c1;isric asis s w e q  :triple nccJ 1101 hz zcro. Thew juiic-tion point n o h  art' given tlic special 
designation "copianar tli in body junction point noJcs." section 4-3. t - 13. 



FIGURE 4.37--SL ENDER BODY ELASTIC AXIS NODES 

outhoar.: junction p i n t  node. Sqmen t  mdesare LLscd but. as noted in the following. they 
are i d  only t o  separate se-ments o f  tlie elastic axis having different stiff- and do not 
introduce a &ange in the direction o f  the elastic axis as in strtion 4.3.1 -3. The elastic axis 
sqmen t  lengths are denoted as LWj) and have interior nodes spaced evenly between 
segment nodes with the spacing 

(4.3-3) 

AL(M.1 E [ a i  
3 3 

ahere q h l j )  is the numher o f  interior nodes on the jth segment o f  the Mth slender bud:-. 
Again. as in the wse of a thin h d y .  there arc four types of nodes on each slender body 
elastic axis: reference junction point nodes. outboard juncrion point nodes, elastic asis 
x-mcnt nodes. and interior nodes. Also. the portion of elastic axis between any two 
3 d J a ~ ~ n t  no& is termed a tinitc dement. h'umberiilg o f  the nodes is identical to  that for 
thin bodies. section 4.3.1 -I - This numiwring scheme is used to  systemize the operations o f  
equations (42-10) and (4.2-1 1 ) t o  assemble a composite stiffness matrix for C3Ch portion of 
3 slcnder body between Rdjacent reference and outboard junction points. 

- / . .? . I .  .Z ..I .wnrhlv of- r l i k  atid slivrdiv- srrircvirrd hodics ti) fhrttr a corrfi'irrariorr. - As 
2lrc3dy noted. the thin and slender bodies 3rc stnictural components of a confisyration 
aiwnibled by joining tlir e l s t i c  axis of the thin and slender hodies a t  their reference and 
outboard junction points. The junction poiiits for the thin and slcndcr structural compo- 
iierlts o n  ths right Iiand sidt: of a soiitiguration 3re iiumbered 3s shown by figure 4.3-8. The 
operations. equations 14.2-10) and (4.2-1 I 1. which ;tsscniFIc tlie conipsi tc  stiffness niatris 
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Slender M y  portion A 

Slender body portion C 

FIGURE 4.38.-STRUCTURAL BODY AND JUNCTION ?OINT DESIGNA TION 

for the c o n f m n t i o n  from the composite stiffness matrices of the thin and slender body 
components. are systemized by s i g n i n g  the appropriate structural node nummrs to the 
reference and outboard junction p i n t s  o f  the components. fisures 4.34 and 4.37. In the 
esample shown by figwe 4.343. the slender M y  is separated into three portio1 -)y 
junction points with the partions dsnottxl A. B. and C while each thin body has only a 
sin& iyfewncc and outboard junction point- The contigmtion therefore requires for its 
r cpmnta t ion  thrcs slender . M y  composite stiff ness matrices and two thin body composite 
stiffness matrices- 

The junction point nunitwr assignment is $ict\\m by figure 4.3-9. The reference junction 
point of thin body No. 1 is assigned the s t r lc tunl  juriction p i n t  node numbe, @ while its 
outboard junction p i n t  is designated a free end and assigned a nodc number in the 
nunilwring sequence for segment and interior nodes. llie portion of the slender body 
denoted as portion B is asigned the structural junction point node number @ 3t its 
reference junction point 3nd the structural junction point node n u m k r  3 at its outhoard 
junction point. One refewncy junction point-- tht  of a slender body on the plane o f  
symmr.try-is dtsipiated the rcfemncr. j:mction point of the conl'lguntion and is shown as 
struciunl junction point node niimbcr (iJ . 

1 -  N 
R Zi - - -  

(4.34) 
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sfcndef body portion A 7 

\ v Thin body No. 1 

FIGURE 4.3-9.-THIN AND SLENDER STRUCTURAL BODY 
JUNCTION POINT NUMBERING 

where M is a bending moment. R is the radius of curvature of an initially straight elastic axis, 
El is the flesurcll rigidity, T is a torsional couple, 8 is the angle of twist per unit of length, and 
GJ is the torsional rigidity. The first of these formulas expresses the Bernoulli-Euler law, 
reference 2-1. p. 106. and the second expresses the law derived by Navier for torsion of a 
cylindrical shaft. reference 2-1, equation 34.1 I .  The factor J in the torsional rigidity may be 
'crived froni equation 35.10 of reference 2-1. or. ior thin-walled structures, from a simpli- 
fication oi that formula given by reference 2-1, section 47. 

4.3. I .5 Elastic axis eluinciir sriffiress inairices. - An element of the elastic asis is the 
section between two adjacent nodes. The nodes are numbered sequentially: thus, there is an 
element of elastic asis from node a to node (a + 1). The stiffness relation, equation (4.2-9). 
for tkis element is exmessed as follows: 

where {ha} contains tile nodal displacement components at node a, {T,} contains the total 
force coniponents from the element at node a, (Q,}contains the applied force components 
.it nodr. a. I Kaa] is the linear relationship relating nodal forces at node a to nodal 
dispiacciiicnts at nodc a and I b+l I is tlir linear relationship relating nodal forces at  no& 
a to nodal disj~lac.ements at node (a+ I 1. 



Ccmsider. now. the stiffness relation for the element from node (a - 1) to node a This 
stiffness relation is expressed as 

(4.3-6) 

where tlic prime indicdtes that the stiffness matrix [KLJ relates to  the clastic axis element 
from node (a - I ) to nod? a The prime is necessary to distinguish this partition of the 
element stitfnes matrix Tram [Kaal appearing in equation (4.3-5). The two element 
stiffness relations are combked as in equation (4.2-1 0)  JS f o ~ o ~ :  (4.3-7) 

Equation (4.3-7) illiistidtes the opcntions involved in forming the composite stiffness 
relation from the element stiffness relations The total forc- at nodes. ix.. {Tu}. are 
required to vanish for equilibrium at the nodes. and the nodal displacements, { 6, }: of 
elements joinins a structural node are required to be identical for continuity of the elastic 
axis at the nodes. ( Qa ) appearing in equation (4.3-7) is the sum of { C&} from equations 
(3.3-5) arid (4.3-6). When the o p n t i o n s  leading to  equation (4.3-7) are carried out for all 
structural nodes. the composite stiffness relation is generated. 

In section 4.2 the composite stiffness relation for a complete structure. i l ia t ion 
(4.2-!4). infers that the structure is unconstrained. The beam thrciry of tlus section does not 
lead to completely unconstrained composite stiffness relation because the slender body 
joined to the rr.frrc.nct. junction p i n t  of the structure is assumed to  be infinitely stiff for 
axial estensioii. The composite s t i f f r i a  relation for the stnicture is espressed as 

k,ut the components of dispbcemcnt and force at the reference janction point node are 

and 



The componerits of force and displacement FXR and dXR at  the reference junction point 
do not appear in the composite stiffness relation. 

4.3.1.5 Composite stiffness marrir.-The mmposite stiffness matrix is obtained, as 
noted above. by assembling the element stiffness relations for ail elements of a configura- 
tion's elastic axis. In the FLEXSTAB system, the structural nodes are numbered in the 
specitk order introduced in sections 4.3. I - 1.4.3.1.2. and 4.3. I -3. thereby leading to  a 
specific arrangement of the compo.cite stiffness matrix. Nodes at junction points are 
considered first taking in order the reference junction point of the configuration. the genenf 
junction points @e-, those junction points having no special characteristics), and then the 
coplanar thin body junction points. Nodes on slender bodies occur next, followed by nodes 
on thin bodies. The matrix is partitioned in terms of this nodal designation arrangement as 
follows: 

(4-3-9) 

- w 

- 
I I I I 

I 
I 

I 

CK3f 

c 0 3  
I , Coupling 

I c 0 1  I C O l  
R e f e r e n c e  
J u n c t i o n  r Po in1 I 

I ' -General -1- - - - - 1----- 1--- - - - - - - - -  

COJ I Coupling I coupling 
- - - - - - -  -1- - - - -1- - - - - - I - - - - -  +---- 

C o  p l a n e r  

1 J u n c t i o n ]  
P o i n t s  C O I  

I I 1 Thin body I 
co; I Coupling I I J u n c t i o n  

P o i n t s  
I COJ 

-1 -  - - - - 4 -----I----. - I - - - -  Slender 
- - - - - - -  

c 0 1  I Coupling 1 COI Bodies I Coup l ing  

- I - - - -  -I- - - - - I----- 1-T;i; - - - - - - - -  

c 03 C o u p l i n g (  Coupl ing I COI I Bodies I - 
where the coupling partitions contain tlie stiffness coefficie i ts  which relate nodal forces at 
the junction points to iiodal displacrments at nodes on tlie thin and slender bodies and vicr: 
versa. Each of the partitions of equation (4.3-9) are derived in thc following as separate 
compositc stiffness matrices for the thin bodies. slender bodies. and junction points. 
Assembly of thc coniposite stiffness matrix for the complete structure is carried out by 
assigning structur;il junction point numhers to each of tlir reference and outboard junction 
points of the th in  and slender hodies 3s dr.ssrihtx1 in section 4.3. I .3. 
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As noted previously, the elastic axis of a thin body lies in its mean aerodynamic surf= 
and consists of straight line segmmts, f w  4.34. The stiffness properties of the elastic axis 
elements are expressed in terms of M elastic 
f i r e  42-5, which are obtained by transformation of coordinates from the I d  thin body 
coordinate system, equation (4.3-2)- The axis is aligned with the elastic axis segments by a 
rotation of the coordina~ thro@l the elastic axis a@e of sweep rNj- 

coordinate systems ( x ~ p  YNj* zNj)* 

-- The segments of elaskc axis on thin bodies hjve finite torsional stiffness and finite. 
-out-ofq&e bending stiffness, Le., for bending out of the plane of the thin body Thin 
bodies, however, are assumed to be infinitely stiff for in-plane tending and extension in 
their planes n e  components of elastic nodal displacement at a node on the ith elastic 
axis -ent of the Nth thin body, therehi?, are given as follows ( f i i  4.3-10): 

€ 6  (i13 E a (43-1 0) 

a 

where d,Ni is a translation normal to the ihin body's mean surface and 8,Ni and ByN, 
denote elastic rotations about the X N ~  and Y N ~  axes. The components of nodal force at  the 
same node are given by 

rq < i > i  3 a 

a 

(4.? 11) 

FIGURE 4.3-1O.-NODAL FORCES 4ND DISPLACEMENTS AT 

A NODE ON ?HE NTH THIN BODY 



where F,N~ is a force normal to the thin body mean surface. M y ~ i  is a torsional couple. 
and M,N~ is 3 bending moment, figure 4.3-1 0. 

The stiffness matrix ior the elastic axis element between nodes a and a + I on the ;th 
segment of  the Ntll thin body is found from equation (4.34) as follows: 

(4.3-1 2) 

- 
1 

3 .[" IKa+l a'CKa+l a+1 a+l  - 

SYM. 
6EI - SEI 
mI2 AL 

GJ 0 -  AL - - - - - - - -  
12Ei 6EI I 12EI - 'GET3 -GKj2 I O '  

6EI - 2EI 6EI - 4 E1 
I 

r! I - -  ( 3 L I 2  AL I (AL12 GL 

where El 
stiffness of the segment. and 

El (Xi) is thc bending stiffness o f  the sezment. GJ EGJ (Nil is the torsional 

L\L E L O i i ) / C a ( N i ) + l l  

is the Icngth of the clastic asis element. 

4.l .I .S Tliiii hodj C O ~ I I ~ ~ ~ S I I C ~  s r i j j i i c w  rtiarris. - Thin hody composite stiffness 
niatricss 3re formed from tlic element stilfncss matrices iollowing the operations described 
iii section 4.3.1 -6. but a t  nodes where thc elerncnts of the elastic asis arc not colinear. join- 
ing elemr'nts arc exprcsgd in different ioordinatc systems. BcCorc thc two rlcnicnts niay 
k aswnibled at this node by the owration of equation (4.3-7). the nodal forces and 
Jispbcenicnts at tlic segment noJc must he trmsiornicd to xconirnon cwrdinrrtc systcm. 
Tiic ;idjoining scyncnts arc dcnotcd 3s t i  - I B Jiid i. figure 4.3- 1 1 .  ant1 tlic noda; forces and 
llisptaccniciits on ttic it11 segment. i x . .  ttie segmrnt I'trrthcsr from the rc~crcnce junction 
point oc ttic tiiiri IWIS. arc tr.msti)rnicll :o ttie coonlinatc systcni oc ttic I i  - I ,111 scgmcnt as 
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FIGURE 4.31 1.-ADJOINING FINITE ELEMENTS ON THE ELASTIC AXIS 
OF A THIN BODY 

where the transformation matrix is 3 partition of an orthogonal transformaticn matrix of size 
6 s 6 for rotation about the Z v a s i s  and is given by 

The tnnsformation. equation (4.3-13), is applied to  the partitions o f  the element stiffness 
matrix. equation (4.3-121, for the element from node a to  node (a Jr I as follows:. 

I 

X 



where [X(i - 1, i)] is a partition of the transposed orthogonal transformation matrix. It 
~OIIOWS therefore that 

(4.3-1 4) 

Equation (4-3-14) defmes a new element stiffness maGx in which the nodal forces and 
displacements at node a are expressed in the lucal coordinate system of the (i - I ) th  elastic 
axis segnent. This stiffness matrix can now be combined with the stiffness matrix for the 
element from node (a .. I )  to  nale  a. The resulting composite stiffness matrix for the two 
element is a4 follow3: 

(4.3-1 5 )  

Ttir operations Icuding to the coniposite stiffness niatrix given hy equation (4.3-1 5 )  arc 
rcpcatci: f o r  ail of tiic nodes on tiit. V i 1  th in  1)ody. ~s sun i ing  tlic refcrenx jtinction point 
o t  [tic iwiiy is tile Q I ! ~  iunction point wiiiie tiir outlwanl junction point is t i i c  
poii:t. t l ic conipositc stir‘;’ncss rn;itris for tlic Xtll  thin body is expressed as tollo~vs; 

jilnction 
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(4.3-1 6 )  

where [KQQ~ and [Kpp] an: the stifhe.- for nodal forces and displacements a t  the 
junction points: [ KNN] is the composite stiffness matrix for all nodes on the Nth thin body 
(exclusive ofjunction wint  nodes); and [KQN], [KNQ], [KPNJ, and [ K ~ p l  represent 
coupling of nodal fo:ces and displacements at the junction points with the nadal forces 
{QN} and nodal displacements ( 6 ~ )  at  nodes on the thin body. - 

The composite stiffnlss matrix (K;NN) represents the structure of the Nth thin body as 
if it w:re clamped at its junctioii points, figure 4.3- 12. Matrices of this form are generated 
for a c h  thin body: and, the thin body partition of equation (4.3-9) contains these matrices 
rrranged 0.1 the diagonal as foUows: 

- - - t h i n  bcdy p a r t i t i o n  1 of Equ. (4.3-9) 

L 

zeros 

(4.3.-17) 

where the partition is expressed for N [hili bodies. 

Clam@ reference r iunction point 

Elastic 

Clamped outboard 
junction point (or 
free end) / 

FIGURE 4.3- 12.-TtilN BODY CLAMPED .4 T ITS JUNCTION POINTS 
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4 3.1.9 Slerrder bodr fitrite eltwrent stiffircss niutriws.-The partition of the 
coniposite stiffness matrix, equation (4.3-9) forslender bodics is derived as follows: The 
elastic axes of  slender bodies are made u p a h a s t i c  axis segments whidi lie along the 
centerlines of the siender bodies, t@&e 4.3-7. The stiffness characteristic, o f  all elastic axis 
elements are theref( l e  dcscri-m h the Reference Axis System. 

The elastic axis segments of slender bodies have tinitc torsional stiffness and finite 
bendirig stiffaess for bending in any direction. Slender bodies. Iiowever. arc' assumed to be 
infi!,i!ciy rigid for extension of the centerline. The ccnapoiients ol' ttodal displacements at  
t!re ath. typical. node on the body. figure 43-13. are s Gl!!?,vs: 

I 
ICY. 

I 

A Z  

Y 

Reference 

Elastic axis 
Outboard junction x- \- 
pcltnr 

FIGURE4.3-13. -NOC.?L FORCES AND 0;SPLACEMENTS AT 
NODES ON SL ENDER BODIES 
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while the components of nodal fmce at the ath node are given by 

a 
i 

(4.3-19) 

'rL stiffness matrix for the elastic axis element between nodcs 01 and (a + 1 1 on the jth 
segment of the Mth slender body is given by the following: 

GJ 
A L  
- 

(4.3-IC') 

4FIy  
0 -  AL 

0 
4EIZ 

0 -- A L  

SYM. 

0 

0 

GJ 
2L 

0 

-- 

0 

1 2  ZT, 6EI,, 
1 

0 ! a i > 3  
0 I 

&2 I 
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where for the Mjm elastic axis element Ely E Ely(Mj) is the bending stiffness about the Y-axis, 
El2 E EI#j) is the bending stiffness about the laxis. CJ GJ(!Mj) is the tonicitlal stifies, and 

- 

(43-3) 

is the length of the elastic axis element. 

4.3.1. IO Slettder budy compositc stiffness mat-. -since all elements of elastic axis lie 
on the mean centeriiw of the slender body and am colinear, the composite stiffness matrix 
.or two adjacent elements is found by a direct application of the operations lezding to equation 
(4.2-7). Repetition of the operations for all elements of the Mfh slender body, unth the 
reference junction p ;nt nuiiibewd R and the outboard junction point iiumbered S. leads to 
the folluwins composite stiffness relationship: 

where [ I(p&]-and i#ss J are the stiffnesses for nodal f o r m  and displacements at the 
junction prints; [ K ~ h l  I is the composite stiffness matrix for all nodes on the Mth slender 
body (e.rclusiveof thejunction point nodes):?nd [ I C M I J ,  JKMR!.  [ K ~ h ~ I , a n d  [KMsJ are 
cxwplins of nodal forces and displacements 3t the junction points with the nodal forces 
(Qhl }  arid displacements (6hl) at nodes on the slender body. 

The composite stiffness matrix [ K M ~ I  I represents the structure of the Mi!' slender 
body as if it  were clamped at its junction points. fisure 4.3-14. Matrices of this I'orm are 
genented, and the slender body partition of composite stiffness matrix for tiit: conip!ete 
structure, equation (4.3-9). contains these matrices arrdnged on the diagonal as follows: 

Slender- Eody 
P a r t i t i o n  of - 
Eqn. (4.3-9) 

- - 1 J Zeros 

e 
a 

e 

w!icti tlic p;vtition is expressed lor hl slcndcr bodits. 
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Cbmpd outboard 
junction point 
(or fiee end) Clamped refaaa 

jrmdhn point 

Elartic axis 

FIGURE 4.3-14.-SLENDER BODY CLAMPED AT I fs  JUNCTIOA' POINTS 

4-3. I .  11 Jturciiort p in t  siijjiress matricts.-The elernetcs of the cwmposite stil'fiiess 
niatris. equation (4.3-9). m l a t d  to  the junction points of tlie structure are developed in this 
scctior. From the partitions identitied in equation (4-3-9) it will lx rriltlltd that the 
junction points are sqxmted into tliretl t y p r :  tlie wferenw junction p i n t  of the structure. 
general junction p in t s .  and cophnar thin body juiiztion points. Ir? deriving the junction 
point s t i f ines  niarris~s a iurther separation 
only tliiri bodies . u t  he treated srpdriitely iron1 those \vhich join at least one slender body. 

introduced. Ceni.nl junction points joining 

Consider a junction p i n t  \v!xre only thin bodits arc joined. such as the example 
shown in figure 4.3-1 5. Only cne of the thin hod>- junction points is an outboard junction 
point at the Qth strucrun: junction point node: that of the Kth thin body. From section 
4.3. I .  1 it will be rr.csllcc! thdt the elastic asis segnir'nts of all of the joining thin hodies lie 
in the samc' plane pan1It.l to the Y.Z plant of the Reference Asis System. As a result, the 
cornponcnts of nodal force 3nd displaccnicnt a t  

Thin bodv N 

point node 

FIGURE 4.3- lrS.-JUNCTlON r dlET NOD€ JOINING THIN BODIES 



the ouiboard ;unction poipt node of the Nth thin body a d  at the reference junction point 
node of the other p i i n g  thin bodies are expanded on the h l  thin body coordinate 
systems, To make them c'onsistent, all componen's are transformed to the local thin body 
coordinate system of the thin body, which K joined by its outboard junction point. the Nth 
thin body in the cxample. 

The components of nodal fonxs ard displacement a t  the outhoard junction point of 
?he Xth thin body are given as 

and 

14-3-23) 

(4.3-24) 

The components of nadal forces and displaements at the reference junction point of thin 
body N + I are ~ransfomed to the local thin body axis system of the thin body N as 
follows: 

fsq'"'1 = Cy(l4+1 ,N) mQ(?i+1)1 

(4.3-25) 

when. the tnnsformatioti matris is 3 partition of the orthogonal transformatien matris for 
rotation about the X-asis and is gven by 



nit! r.lr.mi.nt stiffness relation for the elxitic asis finite element on thin body N+I which 
connects the referaice junction point node to node Q on the elastic axis has the following 
form : (4-3-26 1 

r -  - -  
I 
I 



The stiffness matrix [ KQQl appears on the diagonal of the general junction point partition 
of the composite stiffness matrix for the complete structure. Le.. equation (4.3-9). The 
following stiffness matrices are introduced in the coupling partitions of equation (4.2-6): 

where the node nearest the outboard point mode on the Nth thin body is designated m d e  P, 
while the nearest nodes on thin bodies N+I and N+t are nodes i and j, respectively. 

At general junctidn points where at  least one slender body is joined. the nodal fonxs 
and displacements aie transformed to  the Reference Axis System. The components at all 
nodes on sknder bodies are expressed in the Reference .\?tis System. section 2-2.4 
hence, only nodal force and displacement components a t  the reference and outboard 
junction point nodes of thin bodies are derived in the loc-r;l thin body axis systems and 
require transformation. Thcy are transformed to the Reference Axis System as follows: 

... 

and 

(4.3-3 I )  

where !he transformation matrix is a partition of the orthogonal transformation matrix fcr 
rotation about the X-axis and is gjven hy 

C Y , , l  E 
'I 

0 ccse.: 

3 s i n e , .  
.. 0 

0 .. - - 
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Consider the eyas* of the Nth thin M y  joined at its reference junction point to the 
outboard junction point ot thc Mth slender hody r t  struc!ural junction point node P, figure, 
43-16. The composite stiffness relation fcr the node is found as 

where 

(4.3-32) 

(4.3-35) 

The stiffness matrix [Kppj appe3rs in the g n e d  junction point partition of equation 
(4.3-9) and the following stiffness matriccs are introduivd into the coupling prtitions: 

.. 

%,' I I _ - _  (4.3-36) 

I 

where n is the number of the node nearat the wtboard junction p4nt node of the slcnder 

#z 
body. 

Junction 

Mth SII 
body 

Ebstic axis of M" 
slender body 

Elastic axis of 
thin body 

ender 

h 

N'h 
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FIGURE 4.3 I7.STRUClURAL REPRESENTATION OF A WING ALONE 

4-3.1.13 cop(anar thin  bod^ itrnction points. -The composite st iffnm relation for the 
nddal forces and displacements a t  a coplanar thin body iunction point is oi the same form 
as that given by equation (43-15). These junction point nodes are treated nearly like an 
elastic axis segment node. The sole difference is that the nodes at the ends of two thin body 
clastic axes meetir?g at a coplanar thin body jiinction point are designated the outbo:crd 
junction point of me thin structural body and the reference junction point of the other thin 
structural body, figure 4.3- 18. Redling equation (4.3-1 5) .  designating the two joinifig thin 
structural bodies as N and N + 1 and the coplanar thimi body junction point as P results in 

9 7  I 



c XN 

-FIGURE 4.318.-COPLANAR THIN BODY JUNCTION mINT CONNECTING TWO 
THIN STRUCTURAL BODIES BELONGING TO W E  SAME THIN AERODYNAMIC BODY 

where 

and ri-1 and r i  are the sweep an&s of the elastic axis segments adjacent to the junction 
p i n t .  Iigure 4-3-, 8. 

The partitions of thc c o m p i t c  stitTnrxs matril. qua t ion  (4.+37). which enters the 
coplanar thin body junction p i n t  partition and curraponding coupling partitions of 
equation 13.3-9). are as t'ollo~vs: 

rn (4.3-38) 
CK,,] E CK' 1 + CXCi,i-1)1cK ?E ICX(i,i-l)l- PF 

appcars on the diagonal of thc coplanar t h i n  lwdy juncfion p i n t  pr t i t ion.  



4.3.1.14 Phne o~~smrcrumls).m,~~rr,..--Au configurations which are analyzed by the 
FLWSFAB system must have a plane of geometric, structural, and inertial symmetry. The 
composite stiffnes~ relation for the structure, Le., 

{Q} = cKl{6), (4.2-1 4) 

Uld the composite stiffness matrix, equation (4.3-91, are expressed in terms of nodal forcrs 
urd displacements a t  nods on the plane of  symmetry and on the right-hand side of the 
ainnft- Two compllsre stiffness rehtion~ are developed as noted in section 4 - 2 5  One 
assumts that the nodal forces and displacements are symmetric functions of the Ycoordiite.  
The other assumes that the nodal t'otces and displacements are antisymmetric functions of the 
Y-aHXdUU - te, and the hm composite stiffness relations are denoted as follows: 

symmetric 

193A = CKIA161A anti-symmetric 

(4339) 

4.3- 1. IS Speck1 nnsidemrion for nodes on the phne of syttuneig--- - 

a The s t i f fness  of elastic axes of bodies lying on the plane of symmetry are 
reduced by one-half when the composite stiffness matris is formulated.+ 

0 In the symmetric case the comwnents of nodal displacenient dy, Ox, and 82 are 
set to zero for nodes on the plane gf sy nmetry. 

a In tlie antisymmetric case the components of nodal displacement d z  and 8y are 
set to zero for nodes on the plane of symmetry. 

As a consequence of the above. nodal form snd displacements at nodes on thin bodies 
lying on the plane ofsymmetry, e.g., a convcntional vertical tail. do not appear in the 
symmetric form of the composite stiffness relation, equation (4.3-39). 

4.3.2 Reduction of the Composite Stiffness Matrix 

4.32. i Corrrposite siqjiicss triurrix parriiiwis. --Certain nodal components of force 
contained in { Q}. Le.. Ihe nodal icrces pencratcd by tlir con.positc stiffties matrix. 
equation (4.3-8). are always set to zc'ro. This is the c;?sc' with the nodal forccs at coplanar 
thin body junction points. Tiw ohjl :ire here is to rc'niovc' thew nodal forces from the 
stiffness relation. To acconiplish this objcctive tlic composite stiffness relation for the - 
structure is partitioned according to equation (4.3-9) as follows: 

*Stiffnesses of elastic axes on thc planc of syniiiictry arc' ii:put 3s full  vslurd 
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where {Qc} are the noda forces at the mplana: junction I 
wnish. Le.. 

Equation (4.341 ) reduces !o the following 

where 

ints. Lcttins these nodal forces 



Ile asterisk is used in the partitions of quatiom (4.3431 and (4.3-44) t o  indicate that 
these quantities are generated by the compmite stiffness matrix as given by equation 
(4.3-42) rather than those generated by equation (4.3-8). Equation (4.3-42) represents the ' 
stiffness matrix for the structure in terms of independent d a !  displacement cOmpOnr 8 ts 
and in ienns of applied nodal force components which are non-zero. It is formu!:.ted for the 
symmetric and antisymmetric cises described by sections 4.1.5 and 4.3. I. 14 so that forms 
corresponding to equations (4.3-39) and (4.3-40) are obtained. In either case, however. the 
stiffness matrix i- square and singular. 

4.3.2.2 .Srntcmml node p i n t  degrees uj'f'edom.-The structural node point degrees 
of freedom represented by { 6.) in equation (4.3-441, Le., the mmponents of nodal 
displacement contained in this matrix, sre independent elastic degrees of freedom. and an 
element of { 6 * )  may be assigned any value independent of the values assigned to  the other 
elements. This linear independence is achieved as a result of the special chnice of coordinate 
systems at thc various types of struchiral nodes introduced in the preceding. Table 4.3-1 
summm-zes the coordinate systems used in expanding the nodal displacement and force 
components, the indepencknt elastic degrees of freedom. and the constrained degrees of 
freedom at junction points listing this infomiation for each type of node identified by its 
location. This separation of nodal degrees of freedsrn at junction point nodes into 
independent elastic and constrained degrees of freedom is introduced into the notation by 
letting all six degrees of freedom at a junction point, e.g., the Pth junctbn point. be expressed as 

(4.3-45) 

where the elements of { a i }  are the independent elastic dcgrees of freedom and d x p  is :; 
constrained degrcc of fnedom. 

4.3.3 Displacement Relations for Beam Finite Elements 

In this section the displacenient relations. equation (4.2-7). are derived for the beam 
theory used in FLEXSTAB: They are required to evaluate the nodal mass matrix. equation 
(42-1 8). as well as the transformations appearing in sections 4.2.0 through 4.2.8 as 
cqwtions f4.2-100). (4.2-101 ), (42-1 16). (4.2-1 IO). and (4.2-1 201- 

The derivation of the displacement relations for tlic hcam tlicory finirc .:lc11ii:llts i*, 
zomplicatcd hp tlie asstirncJ partial rigidities of the t h i n  arid slendcr structitrril :*odic.;. In  
itc-l;i (0. section 4.2.7. I . i: w:is assilltiid tililt t k  displuccmen! rt'l;itions coi!Ll be c \ p r L , x w d  
I;?r cadi finite clcmciit o f  tlic structure as 

(4.2-5 1 

= [ : : = ] { I s " :  

J-7.5 



X 
U 
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where { da} represents three components of elastic deformation, equation (4.2-6), at points 
interior to the ath finite element. The finite elements of the beam theory are sectiors of the 
thin and slender bodies between node points, figurt- 4.5-19. Because af the assunied 
rigidities, however, displacement relations in terms of the nodal displacements at the nodes 
of the beam fi-iite elements cannot provide a complete description of the finite element 
displacement. The displacement relations for the beam finite elements are expressed as 

(4.3-46) 

where elements of {F *a} represent the independent elastic deTees of freedom. table 4.3-1, 
at the nodes of the a t t  beam finite element expressed ip  the local axis system of the clastic 
axis, figure 4.3-5. The total displacement of the ath finite element is, however. the sum of 
the displacement given by equation (4.346) and a cowtrained displacement relative to the 
reference junction point of the body on which the ath e1cmer.t is located. i.e.. 

(4.347) 

The total displacenicnt of the ath finite elcnient on the Nth structural bodv is, therefore. 
given by the following: 

(4.348) 

Slender bodv beam 
finite element 

Thin bqdy beam 
finite elemert 

FIGURE 4.3- 19. -THIN AND SLENDER BODY BEAM FINITE ELEMENTS 
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when the reference junction point of the bodv is at the P* junction point node oi'the 
structure. 

4.3.3. I Constririned displhcenient relations.-The constrained displacerents denoted 
by equation (4.347) for thin and slender strurtural bodie? are shown by figures 4.3-30 and 
4.3-1 I .  The constrained degrees of freedom for :hili structural bodies. e.g.. the Nth thin 
body. are d x ~ ,  dyN, BZN, and the points i with the cooidinates X ~ t i ) ,  YN(i) relative to 
the reference junction point of the body undcrgo the follcwinp constrained displxements: 

(4.3-49) 

The only constrained degree of freedom for the slender structura! bodies, e.g., the Mth 
slender tzdy, is d x ;  arid all points such as thc j th poini of a slender body undergo the 
following konrtrained displacement: 

(4.3-50) 

xP 
d , ( ( j )  d 

where the refermce junction poin! of the body is assunled to be !tie Prh junction p0ii.t 
,iode of the structure. 

Reference juiiction point 
of the body 

Displacement c .responding 7 t" 
XN 

\' '. 
Displacd body iying-\ 
in the XNYN piane 

\ 
ith surface p ,tnt - 

\ \  
\ \  

disc lacernent 

mrrespondicig to {"a), 
Outboard JUflCtiOfl ' J  
poirit t> f  the body 

FIGURE 4.3-20.-CON.~TR/.llNED DISPLACEICIENT OF A THIN BODY 
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- t" 

--Rcfawtjunction 
point node 

FIGURE 4321.#NSTRAINED DISPLACEMENTOF A SLENDER BODY 

The constrained displacement relations for thin and slender structnral bodies are 

- jznction point node ofthr: bo& has sis de-gees of freedom expanded on the Reference A .  
derived from equations (4.349) and (4.3-501. respr'ctively. In either case. the wfemnce 

System, i.2.. 

Fdr'the Nth tkin structural bdhy having dilizdnl angle ON the matrix [ X t !  zvduated at tlie 
ith surface point. f i g ~ u r r  4.3-20- his  the followins elements: 

(4.3-52) 

- -For tlir hIth slender structiml body [lie matrix I he - $1 I is g w n  simply JS 

-flit. conipont-nts of ~lisplrtccmcnt hntained i n  { ap} rcprescnt a cornbination of 
indcpwdcnt clastic dcgrccs ol' frcctlwi :lid constrained d c p r ' s  of frcctloni ;it the struc'ttir:rl 
junctian point node. .As shown i i i  id>k -1.3-1. the inJcpt.ntlr.nt elrtstic' and constrai;iclI 
Jcgrws of frcw!om tlic struzrural jrinztion point ncx'r' :ire I I W W  of tlic hoc!y \\.li(,sc* 
outborrril juiiction p i l i t  is rtt tlic notlc. Covstrainctl iiiotioii of tlir' oiitlioard jiinctilw point 

( t i?} c it the result of a rigid connection with the rcfcrcncc junction point of the body. Tlic 
disp ilcenient of tlic Qtll  junction point n(;.lc iiiay tlicrcl'orc I>c esprcssctl as I'ollows: 
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(4-3-54) 

where the matrix (T*QQI transforms the independent degrees of f d o m  at the Q'h 
junctim point node to the Reference Axir Sjrem and introduces zeros fcr the constrained 
degrees of freedom while the nrtric [Fppl is obtained from equations (4.3-52) and (4.3-53) 
-enlurted at the an?rdinates of the outaoardjmction point, Vit, 

(4.355) * 
{6& = CTqp1{6$. 

Assume that the structural h ~ d y  providing the out- junction point at the Q* 
structural junction point node is the (N - t @ thin body having dihedral an* ~ N - I  - The 
.independent clastic dqpees of freedom at the junction point node are dzN-l.6XN-I,8mv-I 

~ 

(table 43-1 ),and the eCements of [T&$ are as follows: 

f 
-CTqQ1 = 

For the same arrangement, the elements of IT* I are QP 

- (4.356) 

(4.3-57) 
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If the structural body providing the outboard junction point at ti* Qa s t ~ a u r a l  
junction point node is the Mth sknder body, then 

0 

1 
0 i 0 

G 

0 - 

0 0 3 
0 

1 

and 

(43-58) 

44.359) 
..’ 

4.3 32 E-ctmp!e of cor?tbined corrstruirtr relusiorrs. -Consider a configuration 
cvnasting of four structural bodies. tigin: 4-3-22. Tlie reference junction p i n t  of the 
configuration is junction point node R. and the reference and outboard junction point 
nodes o f  the bodies are denoted as follows: 

-> 

Reference . Outboml 
M Y  Junction Junction 

Fiumki Point Node Point Node 

(4.3-60 
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FIGURE 4.322-EXAMPLE STRUCNR. CONFIGU~ TION- 
L. .- 

.Le.. the nodal displacements due to elastic deformation at  -unction point node Q 
superimposxl on the constrained displacements artsing from nodal displacements at S. 
Similar relations are exprwsed for junction point nodes S and P as 

(4.3-6 1 ) 
f t 

{6s) = CTss1!6,S) + CT,pl{6p) 

These three equations are combined to describe the junction point nodal displacements 3t 
Q. S, and P in terms of dxR (viz., the reference juliction point of the structure) and the 
elastic nodal displacements at the junction point nodes Q. S. and P as follows: 

(4.3-63) 
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where *e sum on L is over all junction point I; les which link Q to the reference 
jua&n point node of the aimaft- _ _  

Eqwtion (4.3-66) is used to Snerate the followirig transformation: 

5 

where the matrim are given by the following for the esample structure shown by figure 

I: L O 1  I CTs; -'- 3 I c:splcTp;18 
- I - - - - - - - - -  - -  - -1--  - - - -  - 

43-22: 

', 

C O l  i p I I 

.'. 
CTJ 

- 

( 4.2-69 ) 
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. -  

. .  

. -  - 
- .  

Structure-LTbe matrices 

zeros 

Usivg the notation of equation (4.3671, the constrained displacementUdation hi the 
structure is given by the following expression: 

/' 

(4.3-72) 

Equation (4.3-72) is actually a function of the local coordinate systems which may be evalu- 
ated at any point on the mean aerodynamic curface of a thin body or on the centerline of a 
slender body. The result is two components of constrained displacement a t  the thin bodies, 
viz., dXN and d m ,  as well as a single component of constrained dispiacement at slender 
bodies, dx. The component 2 t ~  at a thin body and the components d y  and dz at  a slender 
body arl indepcnden t elst ic components of displacement. 

4.3.3.4 Itdqit*tidc*tir elustic displaccvtirtir relariotis. -The displscement relations for 
the independent clastic dsgrecs of freedom. (S*I l} ,  rcmain to he derived. Le., 

(4.3-46) 
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The derivation is carried out in the following, first for thin structural bodies and then for 
slender structural bodies. 

4-3-35 77iui stnictuml bodies-displncewtetit rebtiom -Thin structural bodies are 
initially planar and ace subjected to bending a i d  torsion along the elastic asis. As shown by 
figure 4.3-3, the elastic axis is made up of straight segments and the distancx between nodes 
is denoted as AL(Ni). A finite ekment, shown by figure 4.123. is the portion of the body 
between two plane sections no& to the ekstic. The plane sections pass through adjacent 
nodes,Qanda+ 1. 

The deformed shape of the finite element is dewxibed in ternis of the elastic asis 
coordinate system. figure 4-34  Let t.11 represent cooniinates relative to the dh node in the 
elastic axis system, fgure 4-3-14, and, to simplify notation, let L replacx AL(Nj) as the 
distance from the ath node to the (a + 1 bth node. 

*N 

YN 

FIGURE 4.323.-FiNlTE ELEMENT OF A THlh STRUCTURAL BODY 

~ 

element 

FIGURE 4.3-24.-THlN BODY FINITE ELEMENT r) 
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From the Bemoulls-Euler laws equation (32.1) of reference 2 4  the fEe;ure of the 
elastic axis is given by the fdowing differential equation: +-  

Integrating and evaluating the constar.ts'of integration using the nodal displacement 
components at the ath and (a + I )* nodes, figure 43-28. leads to a dexriptiwn of the 
elastic axis def-tion-the following heam spline expression: ~ . .  

. - 
c - -  

- 
2 2  1 3  2 - q3- 2 

~ I ( l - 3 ~  /& -+2' /L )Ima-+ (n-2g -.. /L +, tL '%ja 

This result describes -the defonnatibn of the fUrite element arising from bending Torsion 
deforms the ffite element into a helix, Le., 

1 (4-375) - - -  ne 
dZN - - ce'mja L (%ija+l - 'YNja  - 

Combining equati:ms (4.3-71) and <4.3-75), the displacement rebtion for the beam f ~ t e  
element is found s follows: 

a 
i a  l a  

= c N 3  
(4.3-76) 



4.3.3.6 Slender structural bdies4isplacement rehtbm. -For the analysis perfomed 
in the FLEXSTAB system. the deformed shape of a sknder structural body may be entirely 
in t e r n  d i t s  centedine-the elastic axis. Ggure 4.3-?. Letting € - = p e n t  position relative 
to the a* node on the elastic axis, figure 43-25, flexure of the elastic axis i s  governed by 
two different-4 equations ardogous to equation (43-73), viz., 

and (4.3-79) 

- 
Integrating and evaluating thc constants of integration using the nodal displacement 
components at nodes a and a+ 1 leads to beam spliae'relations ideniical in form with 
equatiorr (4.3-74). The displacement relation for the slender M y  finite element follows 
dircctly ils 

where - 
dY 

dZ 

eXU 

eYa 

Za e 

(4.3-80) 

(4.3-8 ! ) 
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FIGURE d 325.-SLENDER BODY BEAM FINITE ELEMENT 

and 

4.3.4 Deforniat ion of the Aerodynamic Surfxes  

Aerodynamic surface deformation arising from deformation a! the elastic axis nodes. 
Le., the matris relations given by equations (4.2-95) and (4.2-90). are now derived from the 
preceding. That representing flow incidence arising irom a displacement n t e  normal to the 
aerodynamic siirfJcc. ie ... equation (4.2-90 ). follows directly froni equations (4-3-76) and 
(4.3-80). Rotations of the aerodynxnic surfaces arc conipiitctl from the preccding 
displacement rvlations using the operations of equation (4.2-92 1. 

4 3 . 4 .  I ( im i ru i t i c~ t l  rotuiiotts ui ue*roci~.trutiiic* sirrfutw -7’lic constraiiied rotations at 
t h i n  hotlics (0: lare found by substituting the Z N  componcnts of I NC 1 ,  cquation (4.3-52). 
into equation (4.2-95 ). l l i e  %N coiiiponwts arc 311 zcros: therctorc. flierc is no constraincd 
rotational contritwtion at  thin lul ics .  

N 
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Theaurstraured yhatiions at slender bodies ace fond by substituting the Y: and 2 
components of [NF), equation 44-3-52), into equation (4.2-95). As in the case of thin 

--thereby leading to reto constrained rotation at bodies.-these co 
slender bodies. 

_ -  

- -  - 
4-3-42 Independent elartic mtations at neroCiynmnic swfaces. -The independent 

elastic rotations are found by substituting the disphce functions given by ryuations 
3-73) A d  (4.3-82) into equation (4.2-95).. 

- _  
fhin bodies: The thin body displacement functions, equatbns (4378), are expressed 

in terms of ttie elastic axis monlinate system; therefore, the s-da? rotation-irst fotmd in 
th% body coordinate $stem to 

- 

ents of the surface rotation in the -- ehstic axis system ani found as 
/ 

where in a manner rinalogotls to eqliation (4.2-92j 
- .  

Because of 1 
related as 

a I - Z i :  
L 

.. 

(4.3-83) 

and it  follows that 

4-80 



where 

Traisior@ng to the local thin body axis system. fiy.i-e 4.3-5, the rotation OEYN is found as 

(4.3-85) 

where 

c l i 3  = 
a + l  

Slender . d i e s :  1ndepenL.M elastic rotations at thq centcrlines of slcncirr bodies are 
found by substituting the displacement functions for sll-ndc.: bodies, ec!uations (4.3-82), 
into equation (42-95). The rcsult of this operation is 

9 a  

cia 

€ Z  [ Ey 

4-90 



4.3.4.3 Emhintion of the aerodynamic surface deformation on thin boJies.-ln the - 
FLEXmAB system, the displacement relations for thin bodies are always ecduated on 
beam sedions which pas; through a node at the elastic axis. Referringqo equations (4.3-76) 
and (4.34351, the displacement functions contained in the matrices of the displacement 
relations are evaluated with the coordinate r) (or YNj> set to zero. The displacement 
relations are thus greatly simplified, but this has been achieved by introdlihg an 
approximation. 

L - 

To P strate the approxi,qation. consider the general arrangement of the aerodynamic 
paneling, igure 4.3-26. The airload on each panel, being the rcsult of a uniform pressure, is 
represe..,ed by a concentrated force at the geometric centroid of the pmel. Also, as noted in 
section 4.2.6.3;aerodynamic control points are located at  the geornetric.centroids of the 
panel.. 

Outboard junction point 

FIGURE 4.3-26:AERODYNAMIC PANELING O f  A THIN BODY 
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. The coordinates of the r.:i;el georiietric centroids are used in evaluating the displacement 
relatlons. In the FZEXSTAB system; these coordinates are arpoxirni.. i by requiring them 
to describe a poit:t on a beam section passing through a nodz. 

A typical thin body aewrlynamk i)illel is shown by figure 4.3-27. The node which is 
nearest to thc point where a Line frori the geometric centroid intersects the elastic axis at a 
right angle is assigned to the panel. The pometric centroiu of the panel IS treated as if it 
were located on the beam section through that node. This is an approximation because the 
effect of the eccentricity, AyNj, shown b!’ figure 43-27. is ignored. The approximation can 
be avoided if the nodes are chosen to be located ,It the intersectior, pints .  

Using the approximation regardkg the geometry of .he panels, the displacement 
relations given bv equhtions (4.3-76) and (4.3-85) are siniplified and 1em-l to the translatiott 
and rotation of the p a i d  being described in terms of the nobd displacement componcnts at 
tiif ;lode assigned to the panel. The translation displacement components are given b5 

- 

’ 

where 

a CN,1 5 
a 

- 
o o c  

0 0 0  

1 0 -x Nj 

‘Nj * 

Bean1 section through node a 

.th : inrercept 
Beam section 
nodes -+ 1 

it’ pane! 

centroid 1.- > 
- /  

Beam section 
through panel ‘4.. centroid 7 - I- ’ .  aeroaynamir. 

pbnel 

through 

FIGURE 4.&27.-BEAM SECT’ON AT AN AERODYNAMIC PAh EL CENTROID 
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whiletherotationisgivenby . 

(4.3.88) 

The quantity 8;~j a is the n t e  of elastic axis twist at the a th  node. - - 
4.3.4.4 Ecduarion of the oero@ynaniic surface deforwarion on slender bodies.--At 

sknder bocies the aerodynamic pressure acting at the surfaces is resolved into p i n t  f o r m  
'A Fj acting at the slender body enterlines, figure 43-25. The aerodynamic control points for 
line doublets, figure 3-4-18. are also located at the surfaces of the slender Wies.  but the 
contribution to the boundary value arising from elastic deformation is eduated at the 

-elastic axis, figure 4.3-28- 

FIGURE 4.3-28.-AERODYNAMIC SEGMENTS OF A SLENDE!? BODY 



In the FLEX!jTAB system an approximation is introduced for the positions G f  the 
aerdynamic forces and controt points relative to  the elastic axis nodes. The aerodymmic 
forces and control points are made to  coinide with the nodes nearest their true location>. 
Again. as in the case of thin bodies. the approximation simplifies the displaixment relations 
and dlours them to be expressed in tenns of n 4 a l  auglacement components at a sinrje 
n d e .  Emhating equations (4.342) at = 0 leads to 

[z] 

j4.3-89) 

.where 

while evaluating equation (4.385) st = 0 leads to . 
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me rate of twist at the ath node is given by 

(4.3-93) 

where G J ~  is the torsiopd stiffness of the i* elastic axis segment containing the node a.  he 
partitions of the flttxibJi5ty matrix [Ce* I corresponding to  those introduced by equation 
(4-3-44) appear as 

(4.3-94) 

me partitions are a11 nuU except 1c;;W-l and this partition has the elements made up of the 

1. 
following mtrices 

such that 

[(&I = 

zero ':I- 
(4-3-95) ' - 

(4.3-96) 

4.3.5 Summary of Aerodynamic Surface Drformation Transformatiopr 

The displacement relations of the preceding permit evaluation of the aerdynamic sur- 
face deformation, viz.. {d*} of equation (4.2-l00), (e*} of equation (4.1-101). 3nd (dT} of 
equation (4 .3  14). The transformatiens obtained from the displacement relations and used 
in evaluating aerodynamic surface deformation are expressed in terms of subsets of the set 
of elastic axis nodal displacement components {a}. 

4-35 I Sibsers of elavic ais nodal displaccrrtc~r:t com;ortertrs. -Tile subsets of elastic 
axis nodal displacement components are as follows: 



where the wbsets are as fellows: 

: X-translation of aircraft reference junction point; 4 R  
{ h k ] :  elastic noJal displacement components a t  aircraft reference junction point, 

( 6 ~ ) :  rate of twist components, equation (4.3-91) 
equation (4.3-18); 

The subsets (6;) and {h;} are obtained from the transformations 

where the matrices 
eqw~ to { a*}, i.e., 

combined, 

CI1- 

the identitj 

(4.3-91) 

of size 

4.3-5 2 Parn'tioired defommtiori transformations. -The deformation of the aerodynamic 
surfaces is related to elastic axis nodal displacement components x follows: 

0 Aerodynamic surface normal translation: 

* 
i d  1 = C?,ICSl (4-2- 1 00) 

where 

and can bc written as 

0 Aerodynamic surface rotation: 

{ 6 ' i  = CF,lf5? 

where 

(4.3-99) 

(42-101 ) 
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Aerodynamicsurc translation: 

where 

a n d a n  be written as 

(4.2-1 4 1 ) 

(4.3-1 0 I ) 

The T transformations appearbig I: equationi (4.399), (4.3-1 O), and (4.3-1 01 ) are derived, 
in the following. in terms of three partiL?ns related to junction points. slender bodies, and 
thin bodies, e.s, 

I [TI = [CTIJ I I CTf ’ [TIp] 
I B; (43- 102) 

where [TI,, (TI R, and IT1 w are, respectively, the junction point part1Li-n. the slender body 
partition, and thethin body-partition. These partitions correspond to the follLwing subxts 
of (a,.}: 

(4.3-1 03) 

4.3.5.3 Juiiction poitit partitions. --The junction point partitions-involve the transf‘orma- 
tions given by equation (4.347). vit.. 

(4.3-67) 

For the Qth junction point, { b ~ }  -a wbwt of{  6;}~-thc displacement rt‘lations given by 
quations (4.3-52) and (4.3-53) are evaluated for points on thin bodies and slender bodies 
to construct [TI J in the form given by equation (4.3-73) to find the junction point partitions 
of equation (4.3-1 01 ) 3s 

and (3.3- IO4 1 
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The partition [T~R] of equation (4.3-100) is replaced by a rigid b y  mode shape matrix 
expanded about the aimaft reference junction point, Le., . 

(4.3-105) 

* 
and the J partitions of [TGel, [Tk] and [TOT] are null. 

4-3-54 Slender body partitions.-The slender body partitions follow f'm the displace 
ment relations given by equations (4.3-80) and (43-86) evaluated in the manner described in 
section 4.3.4.3. Thus, for the jth aerodynamic centroid on the Jth slender body and the a* 
node otl the I* slender body, the partitions are as foliows: 

where 

zeros r =. I 
1 

where 

CT? 1 
Jj a Ci 

["' 
Cr" 3 

e Jja 

-1 
CT; 3 

Jju 
* -  J 

(4.3- 106) 

(4.3- 107) 

(4.3-108) 



For the ith aerodynamic centroid on the lth thin body and the a* node on a slender body, 
the partitions are all null. 

4.3-5.5 ?%in bo&* pwitiotcs.-The thin body partitions follow tmm the displacement 
relations given by equations (4.3-76) and (4.3-84) evaluated in the manncr described in 
section 4.3.4.3. Thus. for the jth aeerodpnamic centroid on the Jth slender h d y  and the ath 
node oa a thin body the partitions am all null. For the ith aerodynamic cvntmid on the Ith 
thin body and the a ih node on the I* thin body. the partitions are as follows: 

where -=I 
fiw vode u on the j‘” elastic axis segment, figm 4.3-27. 

where 

for node u on the j”’ chstic asis sezment. 

wlicrc 

(4.3-109) 

(4.3- 1 IO) 

(4.3- I 1 I ) 



for node a on the j* elastic. axis segment. figure 4.3-1 I ,  

1 zeros r .-. 
L zeros 

for node a 0.1 the j* elastic axis segment. 

(4.3-i 12) 
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4.3.6 Propulsion Systeni Forms and Motions 

In the FLEXSTAB system. the prcpulsion systeni consists of up to ten engines which 
generate thrust forces aiid gyroscopic tm~~yles. The objective of this section i s  to derive 
trmsformations which relate t l iex forces arid couples to the nodal forces of thtt sptcial 
b ~ n i  theory of the system. The forms of lhetrmsforniations \vex introduced in section 
4.2.8 ;IS follo\vs: 

and 

where * Ldnotes t..c reduced xt of nodal rowL% (Le-. cquation (4.3- 

(4-3-1 13) 

14.3-1 14) 

1)). 

The FLEXSTAB system reauires k t  the engine be rcpresentcd as siender bcdies. The 
thNSt forces are applied to thi  nodes 011 tlir slender bodies. \vhile t h i  gyroscopic couples 
are applied IO thc junction point nodrs of the slender bodies. A t:. Ixic:il engine installation is 
stiown by iigure 4-3-29. indicating a distribution of ttirust force arid tlic location of ttw 

gyroscopic couple. 

In the esaniple. tho nacelle is consiJen.J to cmtai!i tlie At'' enginc. and tlie thrust 
lorce is divided into two components actins ut the atll and 9th slcndrr body nodcs. V i e  
column nutris {T} o!-cquatiori (4.2-1 20) t'mtain': only tlic amplitttdr. of the thrust for each 

(4.3-1 1.5) 



Junction point node P 

Elastic axis of th:n 

Elastic axis of slender. 
body (nacelle) 

body (strut' 

FIGURE 4.3-29.- TYPICAL ENGINE INSTA L LA TION 

(4.3-1 16) 

Ihe matrix [NAF 1 contains the riements 



As noted above, the gyroscopic couples act a t  junction point nodes. These couples are 
exparid, ..I in ternts of components on the Reference Axis System, and the column iiiatrix 
{Mc } contains the following etements: 

G -  {M I = 

(4.3-1 17) 

where Mc 
point node. 

Mc MG are the compruents of the gyroscopk couple at the Qth junction 
XQ' YQ' ZQ 

Consider the deformation at the junction point node wherc tlie gyroscopic couple is 
.applied in the esample shown by figure 4.3-29. i.e.. at tlie outboard junction point of a thin 
body. This deformation is given by equation (4.3-5 I ) as 

c - 

arid is a wnsequence of the elastic deformation at the ncclt. point. i . ~ ,  tlie deforrnhtion 
transfiirred to the Qtll junction point node by the constraint5 in  a i l  of the structural bodies 
be twxn  the Qth junction point node aiitl tlir rcfcrencc. junctior! point of the entire 
.,tri.ctiire. l'he deformations a t  a11 junction point nodes o f a  str.ictural configuration w1"t'e 
clcdiiced from cquation (4.3-00) and givcn by cquntion (4.3-67) as follows: 
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/ 
The partitior, of fTG) corresponding to,tlie Qth node is g i ~ n  bv 

0 0  

i C  
0 2 .  ii (4.3-1 20) 

: If thcre is only one engine, then [TL] is of the form 

and the junction point nodal forces are zero except for the Qth jurxtion point node. 
_.. 

Conibining equations (1.3-67) aiid (4.3-1 1 'Zb, the work done by the gymsopic couples 
in deforming the structure is given by 

J 

The nodal forces at the reference junction point of the configwation, viz., 

must vanish; equation (4.3-1 21 ) therefore reduces to 

and the forces x t i n g  on the junction point nor!cs arc- Ljwn as 

The transformation. quatio!l(4.3-! 1 4), is now expressed as 

(4.3- 1 2 1 ) 

(4.3-1 22)  

(4.3-1 23) 
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by letting 

14.3-1 24) 
and 

so that the rtodal forces at all structuml nodes vanish except at junction point nodes 
affected by the _eyroscopic couples. 

4.3.7 Mass Matrix 

The objective of this section is t o  derive the form of the nodal mass matrix (termed the 
. el, ment mass matrix by reference 4-3, equation ( 1  i -7)) whtn the finite elemcr ts of the 

structure are those of the preceding beam theog,  The nodal =ass matrix ! 'A tLe ath finite 
dement is givcn by equation (4-2.1 S), Le., 

-- -. 

(4.2-1 8) 

where the matrix [NaI contains the displaczment functions, equation (4.2-63, used in 
fcmnulating the finite element displacement relaiions of cqua tion (4.2-7), 

The nodcll mass matnx 'or the beam thcory is oki:iined hy substituting into rqLiation 
(4.2-1 8 )  the displacement rclaiions developed in sei tion 4.3.3 and carrying out the indicated 
integratim. 

Hecause the I !isplacement re1;rtiocs for tlr: :JC;IT. throry are scpsrated rnto constrained 
and independent el:istic displacenient relations in sections 4.3.3. I a.id 4.3.3.4, the nodal 
mass matrix is iorrned in two parts: 
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0 Elastic axis nodai mass _. m?tri.u, 
. . -  . -  

(4.3-1 26) 

. where \'a is the volume ot the ath finite ciement. figure 4.3-19. 

These two nodal ma.. matrices are derived separately in the following. 

The nodal mass matnces are geqerated fpr ihe FLEXSTAB systcni in two steps. In th: 
first sten thc distributed mass of the aircraft is replaced by an inertially equivalent sys+zm of 
point masses termed "lumped masses''; this step is performed cxter'or to the FLEXSTAB 
system. In the second step tbt qodal mass matrices are generated irom lumped parameter I 

forms of equation (4.3-125) and (4.3-1 26); this stcp is perforn,,*d by the FLZYSlAb 
system. The lumped parameter forms of equation5 (4.3-1 35)  and (4.3-1 26) foilow directly 
from havirg replaced the distributed m3ss by a si 7. f  m of 9int masses. Lettitig the ith 
lumped mass be denpted as mi, the Ilimpd panmt.:er forms h r  the nodal mas matrices at: 
given by 

-- r IT.. 0 
1 

Q .  T Cmfi3 = [N,(1)1 1 ; ;i 
(4.3-1 27) 1 

and 

I 0 0 . r f L i  

wherc the matrices [Ne Q -  (I)]  and : h;(i)] contain the velues of tlie displzcemeni functions 
- L 

obt,,ined by evaluating them at die coordinates of the it'l lumpetl mass. Forniulhs F.x 
obtining the values and coordinates of tlir lumped inasses to achieve inertial tqui:alenc.i. 
wi.:li the distributed are deveioprd in  the following. 
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c 

FIGURE 4.3-32-FtNlTE ELEMENT SUBDIVlSlOfi OF THE STRUCTURAL '!ASS 

Ac\r=lerations relative to the elastic axes of t l ic distributed mas con:aind in each tlun 
and slender subdivision give rise to inertid. forces a i d  couples at the nodes liavin_g the 
components shown by figures $.-:-io and 4-3-13. A system of point masses may be rigidly 
connected to the nodes which, when acwlcntions occur in the d a i  degrees of freedom, 
k-i-? tiSr: fo inertial nodal fcws ident iwl  io those due to the distributed mas. Ill- lumped 
I ir 6 are inerrbl lp equivalent to tile 4isti ibutzd n is .  

4.3 7.J-  I trrttped mases ON J rhitr bgdt-.-Consi!er tlie thin structural bociy shown by 
figure 4-3-3 I .  Tile ltiniped n i a ~ a  arc assumed to be lwatrtd nn sections of the thin body 
which are I iUrmd to t l r i  els!~; asis and p s  tliroiigl, tlie nodes on tlir elastic asis. A 
lumped mass at the p i n t  P on the y c t i o n  through tlir ath  ode :hedore moves reiative 
to the node as follows: 

(4-3.128) 

A matris evviession for the tlirce componeuts of re la t i c  displacemelit eapliiided on the 
Reference Axis System appears as 

. .  rvlierr. - .  . . 

(4.3-1 29) 
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and 

FIGURE 4.3-31.-SECTlON OF A THIN BODY PASSING THROUGH 
AN ELASTIC AXIS NODE 

A simple approsinlation for the motior? ci the distributed niass of tlie tliiil hod?; 
assumes that a subdivision of the thin hotly surrounding thc stli node. figure 42-31. !now% 
with the node in the mannr'r given by equation (4.3-1 28). Tar  nod31 mass niatris of thc ath 
node is then approsiniated as 



Xke elements of the nodal m a s  m a t i k  equation (4.3-1 30). are inertially equivalent to two 
lumped muses. fmre 4.3-32. L:tting thc twcl lumped nwsts be denoted as mi and m,+l. 
they are inertially equivalent to  the distributd m a s  of the subdivision if 

and 

The operations given by equation.: (4.3-1 3 1 ! mnstitute the first step in pmerating the 
nodal mass matrix for a thin body finitc element. 111zsct equations @ore the momei;t of 
inertia of the finite element about the 'beam --tion throu_eh tht- node: thxefore. there is 110 

inertial force arising from tlie rotarionai acceleration SyNj,. figure 4-3-24. at t w  no& This 
Lmnstitutes an approsirnation. but the approximation is war-ranted bemuse it c m i l y  
simplifies the cwniputations for the lumped m a w  and because it is readily cornpmsated 
for. In practicv the inertia associated with the Ol7Nj de-- of f.cJoni b Giffirult to 
wrnpute and the error in having r&glected this inertia can k. readily reduced by simply 
decreasing the distancv between(;oda along the elastic auis. 

a - 1  

"Nj 

mi 

it1 lumped mass 

CL' + 1  
r YNj 

+ I  la 

'Nj(i) Th,  

- ' 'Nil4 r+\ 
' Center of mass fo. [he rigid strip I X 

mass 

YNj 

fo. [he rigid strip 

FIGURE 4.3-32.- LUMPED MASSE:; ON A THIN BODY SUBDIVISION 
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4.3- 23 Xodal itnzss mtrk for a thin M y  nade--The second step in generating the 
nodal rzcs matrix for an element of a thin body is facilitated Zv defining a lumped mass 
matrix o f  the form appearing in equation (4.3-1 271, vh., 

- 

(4.34 32) 

Ewluating the displacement functions,equation (4-3-1 28), at the coordinates of the ith 
lumped mass. Le-, 

r 1 
0 

the inertia at the dn node Jue to the ith lumped mass is @vm by thc following 

(43-1 33) . .  

(4.3-1 34) 

The total inertia at thL- node is a consequence of the two masst‘s mi and mi+l: thus. the 
inerlb given by equation (4;3-130) is found x 
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Loatimsof lumped rmrra 
a d  tlenda body mdar 

T s l l b d i i n s f a u o ~ t i n g  
lumped- 

FIGURE 4.333-LUMPED MASSES-ON A SL ENOER 80aY SUBDIVISION 

4.3.7.5 N&l mass mrnk for a slender M y  nde--Thr: displacement d:iions for 
slender structural bodies, equation (4.3-80). when evaluated at the lumpd was, wke on the 
fol&wingsimpk form 

0 0 0 0 3  

CNa(i)J f [ 1 d 0 i] 
. 9 1 r  

(4.31 36) 

The inertia at the ath slender body node is f o u d  from equation iA3- I 25) as 

(4.3-1 37) 

where b] is a diagonal mau matrix of the form given by equation (4.3-1 32). C a n y ~ ~ : ~  out 
the operations of equation (4.3-1 371, fhL inertia at the node is found as follows: 

mi 
0 

0 

0 l 0 

0 

i IT1 

0 

0 

0 

(4.3-1 38) 

1.3.7-0 .h i id  rriass nrrtrricxs Jbr jlriictiotr 1h)itIt rro:lz::. - rlir incrtia oi tlic * x i 1 i r s l  

compone.its relative to the junction point nodes is ohtainetl from eqiiation (4.3-1 25) .  l h e  
i*h lumped mass on the Stll stnictt1r.d Iwdp with rderenic. junction point tlic Qtll nock 
contributes tlir following inertia: 

4 - 1 1 1  



h wherc I NC(i)l is the value o f  the cmnstmind displacement relation, equation (4.3-52) or 
(4.3-53). at the location of the ith luniped mass and lmiJ is, again. given by equation 
(4.3-1 35). 

The nodal inertia at the junction point node due to the ith lumpd mass on the mth 
slender structural body is found to be 

- while if the lumped mass is on th 

. ,- ' (4.3-140) 

m i o  o o o o 
0 
ci 
0 .  
0 

zeros 

0 - 
Nth thin body the contribution to the nodai mass matrix 

(4.3-141 ) 



where {dm} describes the translational displacement of the limped masses. 

The lumped niasses are combined _- into a ,singlglumped m i r ~ ~  matrix as fD!lows: 
- . 

0 

mi 
mi 

zeros 

zeros 

m. . =  
0 

0 

(4.3-1 43) 

I - - 
- - - w l w ~  as in equation (4.3-1 32), each lumped mass is repeated on the diawnal- The nodal 

mass matrix of a complete structure is now shtained as 

(4.3-144) 

This matrix appears in the equations of motion described in wctirin 4.2.4-equations 
. (4.248) and (4.2-78). 

4.3.8 Reduction of the Nodal Mass MJtrix 

The nodal m a s  matrix, as given t y  equation (4.3-1 44), is singular and must be reducal 
to a nonsingular matrix to satisfy the requirements of the Tree-vibration problem introdtiied 
in section 4.2.4.1. The singulsrity of the nodal mas matrix is a consequcnce of the rows and 
columns of zeros appearing in the element nodal mass n~a~ws--equat ions  (4.3 130), 
(4.3-138), (4.3-140). and (4.3-141). The lumped i r i m  matrix, Iml, which ap,pears in the 
expression for the nodal mass matrix, is nonsingrilar; hence, the singularity stenis from the 
transformation matrix (Pm], equation (4.3-145). from nodal degrees of freedom to the 
degrees of freedom oi the m a s s .  A nonsingular nodal mass matrix therefore is obtained by 
carrying ovt a reduction of this transformatioil matrix. . 

4.3.8. I Reduction of the inus truitsfrrrtiulioti niurrix I P J .  - n e  basis for rcducing 
the [Pml transformation matrix follows from a consideratior. of the tollowing inertial forces 
diciing at the lumped masses: 

(4.3-1 45'; 

Certain degrees of freedom contaiiied in { 6 )  do not contribute to tlie incrtial forces. 
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(4.3446') 

the desired reductioii is given by 

(4.3-143) 
- 

where [Tr] is formed from an identity matrix by deleting the columns corresponding to 
the massless degrees of freedom contained in (6:)- The columns deleted from the identity 
matrix in forming IT:*] are formed into a second matrix [TS**] so that 

where { 60) are the m a s l e s  Lqgees of freedom listed in tablz 4.3-2. 

4-4BLE 4.3-2.-MASSLESS INDEPENDENT DEGREES OF FREEDOM 

r 
Node location 

~~ ~ 

Nth thin body elastic axis. node on the 

it' elastic axis segnient 

Mth slender bady elastic axis. node on 
the elastic axis 

Junction point node, ot tboard junction 
point of Nth thin body 

Joined to a thin body 

Joined only to a slender body 

Junction point node, outhoarti junction 
point of a slender body 

Joined to a thin body 

Joined only to a slender body 

(4.3-148) 

I Massless independent 
elastic degrees of 

freedom 

e xNi 

I 8,. 0,. oz 



The transformation matrix [P,) must be partitioned to yield the following expression 

the reduced tmnsformatic.i is found as follows: 

(4.3- 1 49) 

(4.3-1 50) 

- ., 
:,-- ..<. 
<' 

(4.3-1 5 1 ) 

where {din) is unchanged from that given by equation (4.3-142). 

4.3.8.2 Equilibrium of the inertial forces.-The inertial forces acting at  the lumped 
masses, as a comequence of nodal accelerations, must be in selfequilibrium for the structure 
to be a free body. The inertial forces are given by 

.. .. .. 
(4.3-1 52) 

and the inertial force at  the structuril reference point node must vanish for equilibrium: 

Introducing the m a s  definition 

(4.3-1 53) 

the acceleration of the rt:-t:t'erencc junction point node is found as 



The reduced nodal mass matrix follows as 

where 

I =  es Cm 

CPm3 = [CII 

Equation (4.3-1 54) yields a 
masses are placed a t  ali nodes on 

(4.3-1 54) 

nonsingular nodal mass matrix provided that iumped 
the elastic axes of the thin and slender structural bodies. In 

the FLEXSTAB system, lumped masses need not be pldced at all nodes: hence, a further 
reduction is required. A transformation matrix IT: J is Cormed in the manner of that 
appearing in equation (4.3-147) to  eiiminate elastic degrees of freedom of nodes which are 
not associated with lumped mas-. Tlle reduced nodal mass matris is found using this 
transformation matrix as follows: 

(4-3-1 5 5 )  

This  nodal mass matrix has the desired nonsingular character and corresponds to the nodal 
mass matrix appearing in equation (4.2-70) 4 i e  eigenvalue Froblem for free vibration. ,A 
combined reduction transformation is obtaincd by combining equations (4.3- i47) and the 
transformation [ T g  I and appears 

(4.3- I 56) 

and yields the following resulc 

'3 
where, in this use, the  dements of ( S e }  corrcspondinp t o  (6,) and { GO}have the value 0. 

4.3.:) Frcc Vibrations 

4-1 Io 



The eigenvalue problem, iquation (4.2-701, is not of standard form. Equation (4.2-70) 
represents a generalized eigenvalue pmblein. In the following, equation (412-70) is reduced 
to the form: 

(4.3-1 58) 

Le., the eigenvalue problem of standard form solved in the FLEXSTAB system. The 
reduction involves two steps. 

4.3-9.1 Redtictioil to a standard eigenvalue problem.-The first step of the reduction 
eliminates the nodal components of acceleration contained in { x} which do not give rise to 
nodal inertia! forces. The nodal masses associated with these nodal components of 
acceleration are zero, and the mass matrix [mgl is remangcd and partitioned to give the 
-following result: 

where the elements of { QL) are ill1 non-zero and the mas; matrix [in,) is nonsingular. 

The stiffness matrix [K] is rearranged and partitioned to conforni with equation 
(4.3-158) so that equation (4.2-70) is expressed as rwo matrix relations as fotlows: 

and 

The seccnd equation is solved for {bnl}, and tlic result is substituted into the first cquation 
to obtain 

(3.3-160) 



Having reduced the problem so that it is exp2sst.d in terms of a lionsingular mass 
matrix, the second step makcs use of the following transformation: 

(4.3-161) 

where the transformation matrix [ L] is related to the m a s  nlatrix as follows: 

C L I C L I ~  = [me]. 
(4.3-1 62) 

The transformation matrix [ Ll is nonsingular by virtue of the nonsingular nature of [me] . 
Ilitroducing the icverse transformation, viz., 

’1 = (CLJ T 1 -1 E L  (4.3-1 63) 16,. 

and equation (4.3-1 62) into equation (4.3-1 60) and premultiplying the resultingexpression 
by [ L] - I ,  it follows that 

(4.3-1 64.) 

where 

The maK, matrix :io longer appears since, by equation (4.3-1 62), 



Equation (4.3-165) is referred t >  as a m d e  slrape matrix because -ach colcrnn corresponds 
to a deformed shape for the akcraft, Le., a mode of deformation. The mode shapes are 
transformed to the noJal displacement coTpmen:s by app1pii:g tht inverse transfoimation 
given by equation (4.3-163), ix. ,  

4.3.9.3 Constnictiorl of the tramformatior. marrk-ihe transformation m a t h  fL1 is 

having elements computed as follows: 

- _  

Lil = Iil . f o r  i=2,3,***,n e,, 

.. 
i -1 

ii K = l  
j -1 

Lii = (me - c L i K  for i > i  (4.3-1 69) 

- - C L L., f c r  j c . i  ar,d, j > l  i K  j1( Lij  = m 
ij K = l  e 
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The free-vibration mode shapes have the following orthogonality properties: . 

(4.3-1 71) 

Le., [4[1 is an orthogonal matrix. 

where Co2J is the disgonal matrix of eigenvalues. 

It is necessary to have free-vibration mod2 shapes txpresstd in terms of the nocia! 
. displacements{ 6 1. This is a c ~ m p l i s h ~ d  by a computation involving the stiffness matrix 
[GJ, equation (4.3-160); the flexibility matrix [e]. cquation (4.3-03);and the syecial 

7;;I,sformation matrix [Tgfi, equatio.1(1.3-155). The operation is as follows: - 
: 

- 

(4.3-1 72) 

where, as noted in sectiozt-4.3.9. I ,  [Tl*] is coi;s;ructed bydeleting rows from an identity 
Fatrix [I] initially equal ill size to the flexihlit) matrix [FI-The rows .' :leted corresy;md 
to the rows deleted from the iolunin matrix (6, } in the reduction t o  ibe } , equation 
(4.3-1 59). The appropriateness of equation (4.3-1 72) may be seen by considering the 
following operation: 

i 4.3-1 73) 

Tlie nodal forces {Qe}i are the forces which must oe applied t o  the structure to &form it 
into the shape of the itl' node. T!IC nodal forces corresponding to the nodal displacciiient 
components {Sm}, equztion (4.3-1 59). are all zero. Thus, thc non-Lcro ekments of 

are the nodal forces contained in{Qes)j, and it follows that 

I- 

where, again, IC1 is ttic tl:,xihility uatri?, ckt'ineil !,y equation (-; 1-84). 



4.3. IO Combinul S t ruc t id  Relations 

The structurai rehhns derived in the preding portions of section 4.3 are combined 
to produce the slructunl equations of motion for the steady reference frtght condition, 
quatioii (4.244). and the unsteady perturbation flight condition. quation (42-78) or 
a. itions (4.2 84). These equations of inution contam the flcdility matrix [? 1 and the 
resi lual flexibility mstrix I ~ R ]  ;and, as s k  --L hy WCI%S 4.2.6 .- 4.28, these 
tkibility nutrices are hansformed to d a t e  dzfoy;...Laf!.m of t k  aerodynamic suCaces to the 
a p p ~  a d y n a m i c  and propulsion ystem %rces. In &e case of the ehstic axis (i.c, 
bezm theory) represen@tion of ttw *achm these trmsformations are identical to those 
of section 4.2: but, here. t k  uaadormations are formed in a manner dHkring compuQiion- 
ally fiom that of vdion 4.2: 

ln the t' p---tical development of section 4.2, the nonsinylar (Le-, damped) flexibility 
matrix, C. is 
transfonnatbt: ..ratrtx [PI, equation (4-2-53)- The free aircraft flexibility matrix is then 
transformed Using the translomatiorrs 6f sections 4 2.6 through 4.2.8. In the M c  axis 
rzprecntstion of t lk  xchon, it, section 2 - . the use of subsets of nodd displacement 
L7rmpnents, tabks 4-51 and 4.3-2. allows s p e d  turaieements of the transformations 
[PI, [Pd 1. [Pdl, [PT] and 
the structural equations of motior?. These special forms amthe subject of this sxtion. 

ned cc the free s h a f t  flexibility matrix, e, section 4.2.3. ., using the 

to rLxhce the computational task involved in generating 

The rmm.iined structunl mations rledoped herein are as follows: 

(4.3-1 75) 

(4.34 77) 

(4.3-1 78) 
.- 

(4.3-1 79)  

Equations (4.3-1 75) and i4.3-17b) relate tri; aerodynamic surface dcformation t o  t!w XL of 
aerodynamic forces{ fT}, introdwed by equzrion (3.5-39). Equations (4.3-1 77) and 
(4.3-1 78) rejhte modynanlic surface dt.formation to [lie propulsion system gyroscopic 
souplcs, { MG), defined by equation (4.3-1 I 7) .  Finally. equations (1.3-1 7 9 )  yield aero- 
dyr mi-. : x e  translations arid ro'ations rc'latcd to free vilmtion mode shapes in the 
rnannci :.:; quation (4.3-1 71). Tlww relatiam arc dcvcloped alw for [!IC case of residual 
tlexibility. 



The subsets of nodal displacement componer;ts rdated to the development are 
summarized as follows: 

(4.3-1 80) 

where the quantities on the left are defined as follows: 

d - X-t;u&tion of reference junction point, 
XR - 

{i5; } : elastic displamment of reference junction point, equation (4.3-18); 

: node point displacement components producing .lisplacement of point m a w s  
h a b i l g  finilc masxs: 

{a,} : node point displacement components producing displacement of point masses 
having zero values; 

{So) : node point displal-ement components producing no displacement af point 
masses (having either zero or finite value): 

- { E T }  - rate of twist components, equation (439  I )- 

T h e ~  subsets are rplated t y  the tollowing transformation matrices: 
/-- 

t.4.3-1811 



Ccnju-ptc to the nodal displacement subsets 3re thc following subscrs of nodal forces: 

(4.3- I 8 2 )  

where it may be noted that the sct of forces (Q}conuins no elements sonjugate to the 
disphcernent set { 6 ~ } ,  Le-, the twist rates introduc2d by section 4.3.1.5. 

4.3- '0.1 SruBrtrss nii;rrices-Remli the conipositc stiffness rclatim given by eqution 
(4-3-42). Le., 

This expression is written as lollow ushg the transformation described by equation (4.3-1 81 ): 

CK,*I 

c;: 3 
S S  

Thi: 
re&iLsd relation is 

- 'iess relation is rtL.iuccd asscrning ttic forces I Qi} . and { Qo ] to be zero. The 



where 

This is the stiffness matrix appearing in the fr2e vihration 9:oblcm- 4uation (4.3-160). 

4.3.10.1. Ffexibifity.-The flexibility r n ~  is 4 fmnd iron; the stiffness relation 

obtained from equation (4.343) and is given by 

The flexibility relation is then written as 

(4.3-1 86) 

(4.3-1 87) 

where the prime indicates nodal displacement componepts measured relative to a rc'lrencs 
frame fixed to the node at the rercrence junction point c f  the qzsemhled configur.it;.v 



Redl the transformation given by eqquation t4.3-119? itom which translation of the 
point masses, equation (4.3-1421, relative to the Teferrpa frame Tied to the aircraft 
reference junction point, are given by 

{di} = [TJ {G&} (4.3-188) 

lntroducing the reference fnme transformtion given by equation (4.2-30) yields 

-idm} = (d' . I  * L$,IIa,I- (43-1 89 j 

The mw.n referenw frame mnstraint conditions, equation (4.262), are now introdua! ?c.r 

detennine the elements of (6p-j s 

where 

and 

Deformation Jf the aerodynamic surfaces {d*} docs not involve the nodal disphcement 
components {a& defined by cquation (4.3- 180): thu;, 

i-e., 3 combinatior. of tiit: transformation matrices in t roJ t !d  by equations t.J.W?' and 
(4.3-1 81 ). The deformation { d*'} is subjec-ted to tlic struztural reference frame !rmifom:i- 
tion, equation (4.3-1 89). to obtain 



and 

(4.3-1 95) 

The results obtained above lead to the following flexioitit) relations: 

14-34 96) 

where 

and 

- where 

and CCGI 5 cc f 'IK;-l. T e 

These tksibility relations itre related to the point nwc; iwrtial forccs { F } by 
introducing the tnqsformation inatris [TeI. equtior (1.3-1 SO),  thereby yielding 

I 

(1.3- i 98 



Following the development of section 422.5, the forces acting on the a i rmf t  
_- structure are given by 

(4.3-2W) 
< .. 

_. - Cm,ICEl. 
The inertial forces, Le., the sermnd and third terms on the rizht of equation 4.3-200, are 
expressd in terms of the point masses, i m j  of equation (4.3-144), as 

(4.3-201 ) .. .. I F  I 1 = - fCmJC5,liBl + czJ{aml) 
t 

where [&,I is the rigid body mode shape matrix for the point mas locations espreswj 
relative to the aircraft center of mass. The applied forms in the form { fT), equation 3.5-39, 
are transformed to the elastic axis nodes using equation (4.24 161, i . ~ ,  

and equation (4.3-101) as . .  

and 

(4.3-202) 

--. z. r-l .. .. I ... where x' B .. 
The inertial forces at  the elastic ?xis nodes follow from equation (4.3-1 5 1 ) as 

CT,,] E CT,,3LT, Y 17 

(4.3-203) 

a n J  



41~0, from the second of equations (4.3-202) and 4.3-203) and from the fact that, at the 
aircraft reference junction point, the total f o m  must vanish, i.e., 

it follows. that 

(4.3-205) 
+ tmJ{i Ai, 1) 

- But, from equation (4.3-1 52) 
.. .. .. 

it follows from equations (4.3-205) and (4.3-206) that 
.. m .. 

(4.3-207) 

where 

Substituting equation (4.3-207) into (4.3-106) and, in turn, substituting the result into 
equiitidii (4.3-2041, leads to the total forces at the elastic axis nodes expressed as 

and ti12 mass matrix, idcntica; \virh equation (4.3-1 541, is expressed as 

whcrc 



Equation (4.3-1 76) follows from equations (4.3-197) and (4.3-208) as 

where 

Equation (4.3-1 77) follows from equation (4.3-1 96) and (4.3-1 23) as 
~ G .“ a? 

Ed 1 = [cdGliM 1 

where 

Equation (4.3-178) follows from equation (4.3-197) and (4.3-1 23) as 

(4.3-2 10) 

(4.3-2 1 1 ) 

where 

Equations (4.3-1 79) follow directly by combining equations (4.3-1 85) ,  (4.3-1 96). and 
(4.3-1 97). 

4.3.10.3 Residualflexibility nratrices. -The structurzl equations of niotion in the casc of 
residual flexibility, section 4.2.4.2, are derived from t!ie stiffness relation given by equaf*an 
(4.3-1 b4) expressed ir. terms of tile partitions defined by equation (4.3-185), viz., 

I----- ... - I  CP e I‘If,l 



Treaiins e q d i o n  (4.3-2 13) as two matrix equations, one may be solved for the nodal 
displacement components (sm] as 

and substituted into the other to obtain 

where-[Ke] is the stiffness matrix defined by equation (4.3-185) and 

The physical significance of the operation 

[P,* 1 1 
is as follows:. 

es 
[T**] [Pe jT{ fT} = net forces acting at nodes haw ; 3 iiiiiss CIA?., massless nodes); 

[fimnl I -1 [pel' {fi-} = deflections at massless nodes due to net forces ai massleqgodes; - 

- 
[Eem J [ Kmm1-' !Pel { fT}= net forcer of constraint at nodes hdving ma& due to net 

forces r.t n:assless nodes; 

** 
IT,, I I pel' {fT}= net forces actitg directly on nodcs having mas.; and 

finally, 

[P,*I' { [TI=  net forces acting on nodes 1iavir.y mass due to direct net forces plus til: 
net forces acting at riiasslcss nodes. b 

Introducing the frcc vihration rnodt: shapcs of section -' 7.9 by substituting 

4- I 30 



The a3propriate partitioned farm of equation (4.3-216) is that corresponding to qua-  
!iolr (4.2-79) and is obtsined by letting 

(4.3-2 17) 

Assuming that the term {u,} is negligible and following the development of section 4.3.9, 
thc structural equations of motion are found as 

(4.3-2 18) 

and 

where 

The residual flexibiliiy matrices c'orresponding to cquatims (4.3-I 75) and (4.3-1 76) ;ire seen 
to he as follows: - -. 

ccRdT1 ''RdQ ICp*IT e 1.4.3-2 2 I ) 

(43-2 3 3) 
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4.4 EXTERNAL STRUCTURAL 1NFLUEKCE COEFFICIENTS 

In  this section the following nia-tii-es are asstiti XI to be generated bit a fitite element 
structural analysis computer program which is external to the FLEXST A system: 

IC] , 1lc.sibility matiiu for a constrained stnicturc, equation (4.260): 

[nib]. nodal nias matrix, equation t4.2-IS): 

[MI, total mass-inertia matrix. quat ion (4.7-26); 

[6* 1 ,  rigid body niode shape niatrix, equation (4.2-2 1); 

, frcc vibration modc shape tcatris, equiitio11 (4.L-69): 

kl], tni I]. generdi~rd stifiness and tiliiss matriccs. equation (4.2-76): . 

[A,]. gyroscopic trans2~.rtiiaticn niatrii, equation (4.2-1 IS). 

These iliatrices providc d l  the data reqiiirzd to forniiilate the structiiral equations of motion in 
ter.ns of nodal displaccnizr ts and forczs. Cor the steady reference Higlit condition, section 
42.3, the equations of motion are givcn by 

mid for the uird~ady perturbation flight condition, section 4.2.?, thc eqi atims of riiotion arc 
gjven by 

and 

4-13: 



(4.2-1-i6) - 

(4.2-1 IS) 

(4.2-1 1 'I) 

and 

where the matri;. operator [PI is used to perform the following tr,msforin;?tions of section 
4.2.2.5 related to structural inertia: 

( 6 )  = C?*lT{6-1 

and 

{QI = CP3{QS!. 

In section 4.: no particuhr form was chosen fur the dispiacemeni relitioris used i i i  generating 
these fbpdd.;:hence, fhc nodi>] forct and diqAaccment coniponents were left unspecified in 
cection 4 2  I n  the f 4 o a  ing -I particular choice of the displacement relations is made. rhis 
chcxce piikesspecific r?quirenients on nodal displacment conipG.leiits and a i  the locations of 
the tiode points; and, through the virtual work relationship or item (c) si' sect; 
choice of displacement relations a k a  determines the nodal force ccIripoiitn'> i 

;ible. These requiranen ts are im;.oscd on thc svpplicd matrice%. 

4.2 2.1 
aye ddriiis- 

The iiiitrix operators 1 Pd] . [ Po] , [ PT I ,  [Ac 1.. an'd [PI are iierivcd i n  thy following, and 
this derivation de!ineares tile rcqLirentents t!iat inust be sitibiieci h y  the supplicd niatriccs. The - 

derivation ~t t!w tilatiii operators [ P d ] ,  [Po] ,  and [PT] is bascd on thc F L E Y V A B  systcni 
idealization of the str,icturc. This derivatiwi is carried out in  section 4.3.1 :rnd is b3scd 01; the 
asscmption that the supnlied structur;t! mi!rrices itre cxpresscd i i i  tert.i% o f  thc coordinate sys- 
tenis used in formulating the aero(!;. unit thcory. i.c.. the Keiercnct Axis System. st'ctiun 
2.2.4. rind the local ' hin body axis systzms. seclicln 3.2.4. f h c  suppl ec! niiltriccs. ho;vcver, can 
be described i n  alternate coordinate :,ystciiis intruclucd !iy sciti, t i  .l.4.2, titit t!wc GIG bc no 
cmrdinatt! rrmsfor:n;ition producing ;I cli:tnge in  t!it: t i ( d i i l  cot ) rvwrs.  The contents of sc'c- 
tion 3.4.3, therefore, IioJ ir. tht. alternate coordiwtc sy~tct;is. I t i :  niatns opcr, o r  IAc; I is 
describcd in scctio:i 4.4.3. and spccial forins 0 1  f l ~ c  t i i ; i tr is  opcr:!*or i 1'1 ai-c d c v c l o l u l  in s6*c- 
.tis11 4.3.4. Finally, the rcqti;rcnicnts that  must 1;~. >:itisl'icd b y  t ' ic sunpl icd tx i i r iccs ;ire 
suntniari/d i n  scc tion 4.3.5. 



by the aerodynamic idealization of section 4. Ti;:. clastic deformation. wli;cli has ;L first order 
effect on the :it'rodyndmic surface pres' urc, cf., section 3.2, IS that which dppem as a phi<  
like deformation at the aerodynmic :liean surfaces of thin budies and a bxnilike dofoimlr- 
cion at the aerodytumic mean cente;:u\es t ' -lender bodies. (See 1;g.i . 4.2-5 ) Further. ;IS 

shown in sections 3.5 and 4.2.7, t!ie :ierodynamic nurfacc pressure distribi resolved illto 
airloads acting at the mexi surtkxs 
bcdies. 

thin bodics -ind at the, mean centerlines of slender 

The finite ele!iient reprcsentation of t!w struciure is required to incorporate nodal di>- 

. the Flatdikr and beamlik? eiastic defornid. icm G! the strxturd! tindie;.. 7 e  nodal displxe- 
placenient components ' 6  1 .  These govtri I isphcemcnt relations which, in  turn, will desci.il;t. 

ment cci?;yonents :t.id their work-conjugrite nodal i'orce'conipc1:. L. ipk<yel! in the FL.EX- 
STAB syb,tcm. are d t a i b e d  in the sections ifiitnediately follow.ing. -Y!Y t;c?!-ccr,iznt relations - 

.-chr?ien lor the thin anti slender structiiial bodies are the.1 intr deiced x!xi :tid.+.s~:cl in a rieiw- 

I j  

. 

-. . .  - _ .  . .  . ;.tion:qf the.matiix operators [Pdl [Pel, and [PTI- . ,- . . .. 

4.4 I. I Co,ttponents of nodul nist~laceaiertt.--The structux!'t!cde =points P : C  assumed to 
b.e-lot ;.t.!d on the niean aerodynamic surfaces of thin hodies and owthe mean aerodynamic 

. cent -.rhos of slender bodies, sectims 3.3.3 and 3.2.4. Up to three niutmlly perpendicular 
For tneath tiode on thin. 
body axis system, _ -  figures 

cmlfionents 01 translation are permitted :it e x h  node. figure 4-41. 
h i y  meart .;urt'ace, the components are expanued 0 1 1  the local thin 
3.2-3 and 3.24, as follows: 

i a  1 = a W' 
.- . 
(4 4-1 ) 

i 6 J B  f 



I Ebticdirplrcanat 
of a slcndef body d e  

X a 
centerline of a beamlike 
*body 

- surfaceofa 
platelike thin body 

Elastic displacement of 
a thin body node 

FIGURE 4.4-l.-DEFORMATlON OF A CONFIGURATION 

The entire nodal displacement matrix 6 has elements amnged as follows: 0 

€6) 5 

t 
nodes on slender bodies + 
nodes on thin bociies 

(4.4-3) 
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considerable care must be exercised in the selection of the displacement components to be 
deleted to avoid elimination of significant aemlastic effects in the FLEXSTAB system anal- 
ysis because, as shown below, the workonjugate aerodynamic forces are also eliminated. 

4.4.1-2 CbntpneW.s ofndforres . - -1~ie  nodal force components used in formulating 
the externally generated structural matrices are required to  be conjugate with nodal displace- 

- ment components in a computation of the work done by the applied forces in deforming the 
structure: 

' . The nodal fowl: at the txth node of a thin M y  may, therefore, have the following compo- 
nents expanded o n  the local thin body - axis system: 

.- 

w . 

At theafh  node of a slender body the Lumponents of nodal force are expanded on the Refer- 
ence Axis System: 

. Tlie entire nodal force matrix {Q} ha, elemem arranged as follows: 

IQ) = 

nodes on slender bodies 

nodcs 0 1 1  t h i n  hodiss 

(3.4-7) 
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4.4.1.3 Symmetric and antisymmetric fbmx-To be consistent with the FLEWAB 
system, the externally generated structural matrices must be expressed only in terms of nodes 
located on snd to the right of the plane ol symmetry of a confguration, section 4-25. The 
nodal foke and displacement matrices aie assumed to express symmetry or antisymmetry 
with respect to the plane of symmetry in the manner of equations (4.2-86) throu (4.2-88). 
For the symmetric case the nodal force and displacement matrices, (Q) and (6p, contain 
only X and 2 components at nodes on the plane of symmetry, while for the antisymmetric 
case, (Q)* and (6JA contain only Y components at nodes on the plane of symmetry. 

4-4.1.4 Dispktcement relatiom-The objective of the following is to develop the forms of 
the displacement relations used in deriving the matrix operators [Pd! 'Pel, and [PTj. - 

4.4-1.5 Tkh bod,, disptacement rehttions.--The structure of a thin body is asgUmed to 
consist of a ribsparaver plate arrangement typical of aircraft lifting surface structures, fmre 
4.4-2. Node points are assumed to be located along the line of intersection of rib and spar 
structural components. The assumption is also made that the change in nodal displacement 
along this line through the thickness of the thin body is negligible and that the node may be 
placed at any point between the two cover plates. 

point 

h ib-spar  line 
of intersection 

FIGURE 4.4-2.-l'YPICAL THIN BODY STRUCTURE 

Local bending detlections of thr cover plates are ignored in computing deformation of 
the camber shape of a thin body. The camber shape brtween ~iodea is assumed t o  deform as a 
membrme. The quadrilateral sections of the thin body nican surfiicc cut out by thc spsrs and 
ribs art: subdivided, as in section 5.8 3. I of reference 1-2. into thc four triangular regions 
shown by Iigurc' 4.4-3. Each triangular region is a structural finite element havins simple sup- 
port a t  its vertices (Le:. at the nodcs of  the structarc) and having infinite stiffness for out-01- 
pliint bending and K i o  stiffness for in-plmr strctcliing. 
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FIGURE 4.4-3.4UADRIUTER4 L MEM6RANE FINITE ELEMENT 

The displacement relation for the triangular element, figure 4-44 is the following linear 
fuaction of  the I d  thin body coordinates (XN, YN): 

dXN(XN,YN) = alXN + blYN + C 1 

2 
+ c  (4.4-8) d YN (X N, Y N 1 = a2XN + b2YN 

d (X Y 1 = a3XN + bayN- + c ZN N, N 3 

~, FIGURE 4.44.-TRlANGULAR FINITE ELEMENT 

The nine coefticients a. b. and c are deterniined from the system o f  nine equations obtained 
by evaluating equation (4.48) at the nodes of ttic triangular clcnient, e.g., 



The resulting displacement relatiun is found as follows: 

0 0  NxN U 

0 
a NYN 

- 

N 0 
%+1 

O N  0 
ma+2 

0 

0 -  0 0  N 0 
NyNa+l YN,+2 

O O N  3 0 N 0 
'*a ZNa+l 

0 N 
''a+: 

(4.4-9) 

dZNa 

d 

d 

d 

d 

XNa+I 

YNa + I 

ZNa+~ 

XNa+. 

where the non-zero displacement functio,ls arc given by 

(4.4- 10) 

)X, + (X, -xN 'N 
- - 1  - - [(Y 

*'at2 a+2 a + l  ZNa - 2A = N  - 
a - NYN a NXN 

'1 + (XN v - x  
u+l N 1 + 2  Na+2 Na+l 

and .4 is the area of the triiiiigular elcmt'nt: 

1- (X r ! - XN a t 2  ) ( V l d  a -Y N a + l  '3 )CY -YN A Z 1 7 [(XN -Y 
a 'a+l Na o+, i  a 
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The displacement relation fot a poiiit in the quadrilateral region is found by avenging the 
values obtained m evaluating the triangular element displacement functions for the four tri- 
angular elements of figure 4.4-3. Letting the four triangular elements be denoted as j, k. I, and 
m, the displacement functions, as expzssed by equation (4.4-10). for these triangular ele- 

ments are denoted by a supcrscirpt. Le., h?(N , NXN , NXN , etc. This leads to a set 
of 48 displacement functions related to a single quadrilateral region. Letting the quadrilatemi 
region be denoted as the ith finits element. the 48 displacement functions are averaged to 
forni 12 displacement functions typified by 

j k I 

(4.4-1 1) 

These displacemat functions are incorporated into the displacement relation for the quadri- 
lateral element having the four nodesa, a + 1, Q + 2, and a+ 3. viz., 

(4.4- 1 2) 
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where 

and 

-- 

-i CNU3 E 
0 

0 

0 

0 

- 
0 

C 

4.4.1.6 Slender body displzcement relotiorts.-The structure of a slender body is assumed 
to consist of a semimonocoque arrangement typical of aircraft fuselage structures, figure 
4.4-5. Deformation of the cross-sectional shape is assumed to  be negligiblc. and the slender 
body structure is taken to have a beamlike behavior. Nodes are assumed to be located along a 
line corresponding to the aerodynamic mean centerline shown by tigure 3.2-2. These nodes 
may be introduced into the finite element model by rigidly constraining the node on the 
centerline to nodes on the periphery, eliminating the peripheEl nodes (e.g., the multipoint 
constraint of section 3.5. I of reference i - 3 .  by modeling the body initially as a beam, or by 
some alternate but equivalent device. ,: 

Stiffening rings 

nodes 

FIGURE 4.4-5.-TYPlCAL SLENDER BODY STRUCTURE 



Consider the segment of slender body centerline between the nodes a and a + I ,  figure 
4.4-6. The Zcomponent of displacement is assumed to vary linearly between thn nodes as 
foliows: ---. 

< <  
dZ(XI = [NZ a (X) ldZ a + [N ' a + l  (XI JdZ a+ 1 f o r  xa-x (4.4- 13) 

(4.4- 14) 

and 

x-x, 
N (XI E 
'a+i 'a+l-'c, 

The X- and Y-components of displacement are given by 

< <  
dX(X) = [NX (XIldx + ',N ( X I  IdX for  X -X-Xa+l 

a a Xa+l a+l  
and 

< <  
dy(X) = [N (XIld, + CN (XI Idy f o r  Xu -X -Xa + 

*Cr -a ya+ 1 a+l 
where the displacement functions are all given by equation (4.4-1 4), Le., 

NX (XI = Ny (XI = Nz ( X I  
a a a 

anu 

N (XI = N ( X I  = N ( X I .  
'a+: yCi*l ' a + l  

The displacetllent relation for the segment of centerline is expressed in the form of cqti;ition 
(4.2-7) ilS follows: 

(4.4- I 5 )  
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th (i + 1) control point 

X 

FIGURE 4.4-6.-DISPLACEMENT FUNCTION FOR A SLENDER BODY 

Except for chaiigs in the coordinates of the nodes. Le., Xaand &+*. equation (4.4-10) 
represents the displacement relation between any two slender body structural nodes. 

4.4. I .  7 Aerodynumic surfuce deforrnariotr trutisfortmtions. -The nodal displacements 
{ b)are trdnsformed t o  translational And rotation deformations at the aerodynamic panel 
centroids and slerlder body l i t x  doublet control points by the matrices [Pdl and [Po I ,  
respectively, as developed in section 4.2.6.3, equations (4.2-1 00) and (4.2-101). The forms 
of these transformations appropriate for trdnforming the structural equations of motion 
described in section 4.4 are found by substituting the displacement relations of sections 4.4.1.5 
and 4.4.1.6 into equations (4.2-100) and (4.2-101). In carrying out this substitution, the 
operations are niore clearly described if the transformations are exprzssed in partitioned form. 

The deformed shapes of the structure at the aerodynamic panel centroids and slender 
body line doublet control points, Le., (d*} and { e * } ,  are expressed in terms of partitions 
related to thin and slender bodies-equations (4.2-98) and 4.2-99) -denoted as follows: 

The iiod;d displaccnient components of cqwiion (4.4-3) arc simi!aiiy partitioned; licncc. con- 
veiiicnt forms for the aerodynilnlic Stirtiicc transformations ;ire given by 

(4.4- 16) 
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and 

CP,3{61 = (4.4- 1 7) 

The partitions of the transformation matrices are derived in the following: 

Consider the ith aerodynamic control point on  a slender body between the nodes a 
and a + I ,  figure 4.4-6. The elements of the transformation matrices which relate 
deflections at this acrodynamic control point to components of nodal displacement 
at &des a and ai- 1 are as follows: 

From the displacement relation oF ecyation (4.4-1 5) 

I1 = 
1 I CP’ 

di, at1 
rc P 

- .  - L - . d i , a  I 

0 

0 
- - - =  

0 

where Xi is the coordina 

I 
I 

0 1  0 
I 
I 

xat l-Y. I 

0 11 

xa+l-xa 

2 ofthe ith control point. 

For the two-segment example shown by figure 4 4-6, 
given by 

r 

PA I =  
.“B,B 

(4.4- I 8) 

1 xi-xu 
*a+l-*a 

0 

0 

the partition [Pd I is 
B,B 

c o 3  1 
(4.4- 1 9) - - - - -  

I I 
I CP’ I 

i+l, a t 1  1 d i + l ,  at2 
L 
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Consider now the ith aerodynamic panel centroid on a thin body locate 
triangular elenrent with the nodes a, a + 1 ,  and a! + 2, figure 4.4-4. The c IL'inen':b of 
the transformation matrices which relate deflections at this aeiodj-mmic centroid . 
to compcnents of nodal displacement at the node a! are 3s follows: 

.i the i' 

From the displacement relation of equation (4.4-9), 

(4.4-20) 

where 

+ tx, Y -X Y 1 3  
a+l Na+2 Na+2 Na+l  

and X N ~ ,  Y N ~  are the coordinates of the aerodynamic centroids in the local thin 
body axis system. 

For the ith centroid on the jth quadrilateral finite element, equation (4.4-20) is 
replaced by 

I (4.4-2 1 ) 

where tb,e clement f i ~ ~ ~ ~  is obtained by evaluating the correspondiag element of 
equation (4.4-1 '). In the case of a thin body having two quadrilatedal finite ele- 
ments, six nodes, and three panel centroids, figure 4.4-7, the thin body partition of 
equation (4.4-1 6) appears as 

CP I =  
dW,W 

(4.4-22) 
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/-- Quadrilateta! j 

+ 1  

cu+2 

FIGURE 4.4-7.-THIN BODY HAVING TWO QUADRILATERAL FINITE ELEMENTS 

Coupiing between slender bodies and thin bodies given by the partition [ Pdg I’ 
always zero, but the partition [PdW ~1 can be non-zero when nodes on  slenclk, 
bodies are sirnultaneasly designated to bc nodes a n  thin bodies. For exampi,. i. 
the two nodes ff and ff+ 5 in figure 4.4-7 were nodes on a slender body as well ns 
nodes on the thin body, the non-zero coupling pdrtition would be given as 

(4.4-23) 

and the matriccs appearing i n  quat ior!  (4.4-23) would bt: dcleted from thc thin 
body partition shown by equation (4.4-22) so that there is consistency with tLe 
definitions of {d*)  and f a ) .  cf., equations (4.2-98) and (4.4-3). 
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The aerodynamic surface rotation at a control point o? a SIC nder body is found by 
sdbstituting into equation (4.2-92) the displacement relation given by equation 
(4.41 5). The result of that operation evaluated at a control point l oa t cd  anywhere 
between the nodes Q and a + 1 is givcn by 

'I = 
' CP' 

ei, a t1  I 
I 

- 
1 - 0 0 1 

'a+l-'a 0 
*U+l-', 

0 

(4.4-24) 

The partition [ P ~ B , R ]  is an array of the matrices described by equation (4.4-24), 
which are assembled in the same manner as [l'dg,B]. 

The surface rotatim due to displacement of a triangular chin body mean surface ele- 
ment is h u n d  by substituting equation (4.4-9) into equation (4.2-92) as 

I- I 
3 I CP 11. = (4.4-25) 

l,a ' i , a+ l .  1 'i,a+2 ,J 

wher: 
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The surhcx rotation at a quadrilated surfacz element is found by superposition to 
find the average rotation in a process ident iu  to that leading to equation (4.420). 
The partition [Pew wl is an array of the matrices described by equation (4.4-25). 

The coupling bctween slender and thin bodies, Le., [PeB W I  and [Pew B], is likethat 
appearing as [ P ~ B  w] and [Pdw g]. The partition [PO3 ;\, J is always ;em and the 
partition \Pew g1-k non-Zen, oky ahen  nodes on  thin I;odies are, at the same 
time, nodes onbender bodies . 

4.4- 1.8 Forces ut ?he stmctumf  ode^ due to aemdynamic sw,ke pressure.-The nodal 
forces due LO aerodynamic surface pressure are derived in &tion 82.7 and are given by the 
matrix transformation 

The trairsfonnation matrix [PT] is shown in section 4.2.7 to be deriveti from thc displacement 
relations, and this derivation leads to ' 

Id$ = CPT7l61 (4.2-1 14) 

The components of displacement { dT } differ from those containt4 in { d+ } in that 1 d i )  a n -  
tains X-mmponents of displacements at thin body nodes. 

-The transformation matrix is developed in terms of thin and slender bodv partitions in 
the manner of the preceding, is., 

(4.4-26) 

The partitions of this matrix are derived in a mmner closely analogous to  the partitions of 
[Pd]. The derivation is as follows: - 

n1.s partition is very siirilar to [PdB B J  appearing in section 4.4.1.7 and is con- 
structed of ttw fdlowing partitions: 
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Consider the ith aerodynamic control point lomted a n  thei* trianwlar clement 
with nodes a. Q + 1 .-and a + 2. figre 4.44. The elements of the tnnsformation 
matrix that rekite deflections { dT)  at  this aerodynamic panel centroid to compo- 
nents of nodal displacement a t  node a are as follows: 

From the displacement relation (4.4-91, 

(4-4-27) 

For the ith control point on the jth quadrilateral tinite element. equation (4.4-27) is 
replaced by 

- 

CPj I = 
Ti,a 

0 

0 

\ . O ]  El ZNia (3.428) 

- - . --_ where the elements $i&ia and $ N ~ ~  are obtained by evaluating equation 
(4.4-1 2). In the case of tlie thin body example shown by tigure 4.4-7, the thin 
body partition of equation (4.4-26) is given by 

CP I =  (4.429) 
W 

1 I r01 I C O I  I c - . T  d 
' i , a+ ' i  - - - -  - - - - - - - - - - - - - - - - - - - - - - - -  I I I 

31 c o 3  ' C O I  ]IC PI I i  l1 CP;; i C PA 
-itl,a I - i + l , a + l  I I 1 ' i+?,a+5 
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Coupling betwlvn slender and thin bodies given by the partition wl is always 
zero. hut t k  partition [Prw gl can be non-zero when nodes on slendh bodies are 
simultaneously designated as'nodes on thin bodies. For example, if the nodesa and 
Q + 5 in figure 4-4-7 were nodes on slender bodies as well as nodes on the lhm body, 
the non-zero mupting partition would be given by 

' 

CP 7 = .  
*W,B 

-. - I - - - - - -  - - - -  
(4.4-30) 

and the matricvs appearing in equation (4.4-30) wotiid be deleted from the thin 
body partition shown by equation (4-4-29). 

4.4 I .  Y Redrictiott of the stnrcttual degrees of,?t?edom.-The supplitd structural matrices 
are assumed t:, be expressed in terms of thiee translational degrees of frrtdom at each qode or 
in terms of specific subsets of these degees of freedom. The subsets are restricted in that 
every node on one thin or slender body must have the same d-es of freedom. The choice. 
however, may differ for different bodits. e.g., the nodes on the ltl' thin body may have dZ1 
degrees of freedom while nodes on the Jth thin body may have dm,dyj,dn degrees of 
fmiom.  

When the degrees of freedom are deleted from { 6). their workconjugate nodal force 
components must also be deleted in { Q}: thus, if the flexibility matrix [Cl is supplied with 

- the rows comqonding to d ~ 1  degrees of frcxdom deleted for the I t h  thin body. then the 
columns corresponding to FXI components of force must also be deleted for the Ith thin 
body. The FXI components of inertial force for the thin body. however. may be retained in 
the analysis using the methods described in section 4.4.4. 

4.4. I .  IO .4ppro.\-intuiiotis in [he prr.~~tcm-j&-c trutrsjortitutiori ti1atri-v- -The trans forma- 
tion expressed by equation (42.1 16), rclating the aerodynamic surface pressure to compo- 
nents of foice at the structural nodes. contains approximations implied by the derivation of 
wction 4.2.7. The nature of these approsimations, when !he method of section 3.2.7 is 
applied, is described in the following. first. for the slender body partition and. second. for the 
thin body partition. 

4.4.1. I I  Slcvidcr body upplicutir~n.-As shown by sections 3.5.1.3 and 3.5.1 -4. the aero- 
dynmic surlacc pressure acting o n  the surlaccs of slcndcr bodies is resolvcd into threc compo- 
nents d force. Thew components o f  force ;ire expanded on the Reference Axis System ;ind 
arc assunied to act a1 the aerodyiuniic ccntroids ol' the dcnclcr hody acrodyn;imic stymcnts. 
The components of displ;iccniciit i n  tlic direct i t  Ins of 11ic rcwlvcr l  force coniponcnts arc c'valii- 
;itcd by tlic equation (4.2-20). i\iid tile nc~d;il l'orcc conipticiits ;irc conipiitcd hy tllc work 
rclations of scction -I.:.?. 
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The precxdiing operations introduce several approximations. One of these approximations 
ignores the efiect of the variation of surfam pressure in the Xdirection. This approximation is 
identical with t k t  introduced in section 3.5. where the total aerodynamic forces acting on the 
aircraft are derived. In addition to this approximation. the integrals appearing in equations 
(4.2-108) and (4.2-109) are carried out assuming that mer?. aerodyiiamic surface s m e n t  lies 
entirely interior to  the iiodes of a single structural finite element. In pnctiLy, one aem- 
dynamic surface segment may span one or more structural finite elements. The approxima- 
tion, in these cases. places the airload of the entire aerodynamic segment on that structural 
finite element that con*;lins the aerodynamic centroid of the aerodynamic surface segment. 
The validity of this approximation dqenerates as the lengths of the aerodynamic surface seg- 
ments in the Xdirection are increased in relation to the lengths of 'he structural tinite 
elements 

4.4.1. I2 Tttin M y  application.-In applying the transformation to thin bodies, the 
approximations arc less seven. than in the slender body approximation. The reduced severity 
stems from the fact that the lifting prc-ssure is uniform on the acrodynamic surface segnents 
(Le.. the pamls). Because the pressure is uliiform and the displamment relations are linear 
functions of the loa1 axis system cwordinales, the integral appearing in the work relationship 
given by equation (4.2-108) contains no approximation, provided that the aerodknamic pane! 
is entirely interior to a structural finite element. 

Approximations are introduced by the fait that the edges of aerodynamic panels fail to 
cwincide with the edges of structural finite elements, figure 4-4-8- The aerodynamic panel is 
treated as if it were entirely interior to the structural finite ekment containing tne geometric 
centroid of the panel. In effect. this approximation replaces the boundaries of the structural 
finite elements with the boundaries of the aerodynamic panels, tigure 4.4-8. 

panel 

L Etfective structural finite element 
- 

boundary 

FIGURE 4.4-8.-APPROXIMATE STRUCTURAL FINITE ELEMENT 
BOUNDA RlES ON THIN BODIES 
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Often the structural f i i t e  elements do not extend to the edges of the thin hody plan- 
form, figure 4.4-9. This situation usually occurs because the leading edge, trailing edge, or tip 
Stru~ture is treated as secondary structure in constructing the finite element model. In these 
cases the distances from the structural fmite element geometric centroids to the panel geomet- 
ric centroids. figure 4.4-8, are used as a basis for choosing the structural finite element to  be 
related to  a panel outside the structural planfor .. The structural finite element, whose 
geometric centroid is nearest to the -metric centroid of the panel. is related to the panel. 
The displacement relation for the so-related structural finite element is extended, in analytic 
definition, to the cwrdinates of the panel geometric centroid and evaluated there. This value 
iS then used in the construction of the transformation matrices [ Pd] . [Po], and [PT], as in 
sectiens 4.4.1.7 and 4.4.1.8. 

~Sm~ctural  node paint 

.Extended 
structural finite 
element boundary 

element boundaries 3 

FIGURE 4.4-9.-EXTENDED STRUCTURAL FINITE ELEMENT BOUNDARIES 

4.4.1 ESlC Coordinate Systr'ms 



In practice, the supplied matrices are usually expressed in terms of coordinate systems 
differing from those used in the aerodynamic comp:itatiocs. Recalling the discussion of 
sections 2.3.23 and 4.2.2.4, the coordinate systems used in describing the structdral behavior 
me seen to be fixed to it geometric shape (or configuration) of the aircraft titat is regmled as 
undeformed: this is also true of the coodinate systems used in describing the aerodynamics. 
The undefonned shape used in the aerodynamic idealization, however, may differ from that 
used in the structural idealization, thereby leading to differences between the structural and 
aerodynamic coordinate systems 

Differences between the structural and aerodynamic coordinate systems have two 
sources The first source is the overall rotation and trinslation, described in section 4.2.2.2, of 
the aerodynamic coordinate systems relative to the structural coordinate systems. This differ- 
ence a r i m  becauze the defining coordinate systems for the suppiied structurd matnces are 
structural reference frames while tile coordinate systems used in descrir ng the aerodynamics 
are mean reference frames. As noltd in section 4-2-22. this difference is ignored and the 
Reference Axis System is used as the fundamental coordinate system in both cases. The 
second source is an effect of structural deformation on the local thin body aerodynamic axis 
systems that causes the Iccal thin body axis systems of the aerodynaniic idealization to be 
different from those of the structural idealization. 

The structuml finite element model is usually forniulated using thc geometry of the air- 
craft in its design-point flight condition. The m a n  surfaces of thin bodies. convdining the 
structural node points of thin bodies. section 4.4.1. I. therefore have the locations appropriate 
to the design-point shape. The thin body mean surfaces used in the aerodynamic computa- 
tions. however. may be chosen to be located in positions appropriate to an offdesign-point 
flight condition being analyzed for stability. Relative translations between these two sets of 
thin body mean surfaces are of no first-order consequence to the an;ilysis. but relative rota- 
tions lead to nodal force and displacement components i n  the two idealizations cxpanded on 
two different sets of coordinatc systems. A s  noted in sections 2.3.3.3 m d  2.3.3.4. equations 
(2.3-52) rwd (2.3-57). as well as in section 4.2. I .  these rotations must be very small, and their 
effect on the nodal coniponents is negligible. 

The nodal force and displacenicnt components related to thc supplied matriccs are 
treatcd as if they were cspanded on tlic Reicrcncc Axis System arid tlic local th in  body aero- 
dynamic asis systems of thc asrc)dyn;imic computations. The cl'iects of clastic rotations on the 
local t h i n  body axis systcins arc igrwrcd cor f l i t  same rc;isons that rc1;itivc rotations bctwccn 
mean and striictucrl rdercncc frumcs arc ignored. ci., section 4.2.2.2.  It sliould hc noted f r o m  
section 2.3.3.3. Iiowcver. th;it relrrti\c' rot;itions ahout the Y ;ind Z axes ;ire inc.ludcJ in clic 
aerodynmic boundaiy conditions: tlic cltccts of cliat\scs in iiilic.Jral mglc [ i.c.. rclativc rota- 
tions about tlic .Y asis) tha t  signific;intly all'cct latcra;-dirc~tioii;il st;ibilit>. predictions arc 
dclcted I;roni tlic :icrwlynmic Iwuiidar!. contlit i o n 3  to obtain lincarity. Tlic c1fcc.t ot dilicdr:il 
angle dclorm;itioii niiist he inti-oduc-cxl i n t o  tlic :iii:il!+i ;is hiiggcstcd ;ihovc. vi/ . .  the local  t h i n  
I ~ o t l y  asis systcnis l o r  tlic acrotl! naniic idc;ili/;itiwi ;ire clioscn t o  he tliosc ap,:;opriatc to the 
sliapc o l  tlic uircrat't i n  the rckrcixc Iliglir condition bcing ; i n : i l j . x d  for i t ah i l i t y .  
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An ESIC Reference Axis System and ESIC local thin body axis systems, figure 4.4-1 0, are 
introduced as a convenience for the FLEXSTAB system user. The origin of the ESIC Refer- 

ence Axis System can be arbitrarily located, but the ax& of this system must be parallel with 
the axes of the Reference Axis System. The origin of an ESIC local thin body axis system is 
located in the mean surface of the thin body in the geometry of the structural idealization, 
and the xEn,yEn plane must coincide with the mean stirface. The dihedral angle e,,, however, 
as noted in the preceding, may ditfer from the dihedml angle BN in the aerodynanlic 
idealization. but this difference is used only to effect node point geometry-section 4.4.2.2. 

4 - 4 2 ]  Armgement of the ESIC coordi,rote system--The ESIC Reference Axis System 
is introduced with the origin having coordinates AXREF, AYREF. AZREF in the Refercnce 
k~is System; the coordinate lines (XE,YE,ZE) are parallel to the X,YJ coordinate lines of the 
Reference Axis System. The origin of an ESIC local axis system is located by its coordinates 
(XE,,,Y~,ZE~) in the ESIC Reference Axis System; xEn is parallel to the XE axis, and 
yE,,zEn art: oriented by a positive rotation 8 about the xEn axis. The xEn,yEn plane coin- r? cides with the mean surface of the thin body in the geometry of the structural idealization. 

 AX^^^- A y ~ ~ ~ q  ~ E F )  

\ 

Reference Axis System 

/ 
ESIC reference . / axis system --& I/’ 

1 Y  

ESIC local thin 
loby axis system 1 

/ 
Y 

FIGURE 4.4- IO.-ESIC COORDINA TE SYSTEMS 
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4.4.2-2 Trcnsformation of node p i n t  geontetr-.-The FLEXSTAB system is capable of 
generating the tigid body mode shape matrix, [66], based on the arrangement shown by equa- 
tions (4.2-16) and (4.2-2 l ). This computation utilizes the geometric locations of the structural 
node points described to  the FLEXSTAB system in the ESIC coordinate systems. The coordi- 
nates of these points musr, thtrefore. be transformed to  the Reference Axis System. 

The mordinates of nodes on slender bodies (e.g., theat 'h node) are expresxd in the ESIC- 
Reference Axis System as 

X E ( a ) , Y E ( a ) , Z E ( a )  

The locations of these points are expressed in the Reference Axrs-System as 

(4.4-3 I ) 

The coordinates of nodes on thin bodies (e.g., the ath node on the NLh thin body) are 
expressed in the ESIC local thin body axis system as 

the zEn coordinate being zero. The locations of these points are expressed in the ESIC ".fer- 
ence Axis System as 

Y,(a) = yE,(a)coso, .i- YEo 
(4.4-3 2) 

- 

The locations in the Reference Axis System are then obtained by siibstitiiting equations 
(4.4-32) inlo equations (4.4-3 I ) .  

4.4.3 Construction of the Gyroscopic Coiiplc Transformation Matris 

The gyroscopic couple transformation niatr is  describcs rt?tation, ( e']. at thc center of 
tlis masses of the engines. These rotations iirisc. from tlic nodal clisplaccnicnt components ( 6 )  , 
equation (3.2-1 18). Le.. 
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The rotations at the engines are expressed as 

G { e  I = (4.4-33) 

The components of ( 8  G ), expanded on  the Reference Axis System, are assumed t o  be the 
result of a rigid connection of the ith engine to  a subset of  the nodal displacement compo- 
nents, { 6). Equation (4.2-1 18) can then be expressed in terms of partitions of the following 
form : 

(4.4-34) 

where { 6 f }  is the subset of { 6 )  for the i th  engine. 

Engine supports are almost always chosen to  be statically determinant as in the follow- 
G ing example. As a result, if the subset { 6i ) is taken to  contain the three coinponents of 

translational displacement at nodes representing the engine support points and in the dire;- 
tions of engine loads, thcn the degrees of freedom { 6: ] uniquely determine the rigid h d y  
rotation at the engine center of mass. Assuming this to  be the case. the elements of [ A c i l  
are readily computed froin the componcnts of thc vectcr product 
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* 
where rf is thL position vector froni the engine centcr of mass to  an engine support node. 
Alternately, the elements of [ A c i )  can be found from the expressions describing the 
moments at  the engine center d ~iiilss arising from unit values of the engine loads at the.engine 
suppo~? nodes. 

Consider the example shown by figure 4.4-1 : , wherein the engine has statically determi- 
nant support provided by forces at  three nodes. The components of force that provide reac- 
tions to the engine loads at  these nodes are shown by figure 4.4-1 1. The components of 
moment a t  the engine centcr of mass arising from node force reac:ions are given by 

ME = F~ ye(a+2) + F~ ye(a+2) 
a a+2 

G e My = -Fz x (a) 
a 

where xe+j, ye(a), etc. are the components of the position vector? evaluated at thz subport 
node.;. ?'!itse three relations plus three relations relating engine thrust and weight to the sup 
porting nodal forces, i.e., 

F: = F, 
"a+ 2 

T Fy = F.. t F 
ya 

FT = Fz + F, + F.7 
--at1 -a+2,  z a 

arc w l v c d  f o r  t l x  six force components a1 the cupport nod+ The partition of' the resulting 
coeft'icicnr niat:is i i i u ~ t i p ~ y i n g  ttic conipoiicnts !if(;. M?. M'J yields ttic dcsirt.4 gyroscopic 
coiip~c trarisforrnatiori niatris partition. :\ssuiiiing 7 I i a t  ttic cnginc is ttic it11 cnginc. ttiis parti- 
tiori is given by 

1. 
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[A - 1  = G1 

- 0  

. o  
0 
0 

0 

0 

3 

ye (a+l) +ye( a+2 1 

-1 

0 

0 

1 
ye(a+2) ' 

0 

FIGURE 4.4- 11.-ENGINE STRUCTURAL SUFPORT LOADS 



4.4.4 Matrix Operators lnvolving Nodal Inertial Forces . 

The objective of  this section is to  describe, in detail, the construction of the matrix [ P] 
defined by equation (4.2-53). As shown in section 4.2.2.5, this transformation matiix is used 
I? the following operations involving inertial forces a t  the structural nodes: 

{SI = CPJT{S’I (4.4-35) 

and 

{QI = CPI{QS}. (4.4-36) 

As seen by equation (4.2-53), i.e., 

[PI 5 [[I] - C I ~ ~ ~ ~ $ , ~ C M I - ~ [ $ , I ~ ]  (4.2-53) 

the transformation matrix is constructed from the rigid body mode shape matrix, the nodal 
mass matrix, and the total mass-inertia matrix; however, this form of the transformation 
matrix is not actually used in the FLEXSTAB system in the computation shown by equation 
(4.4-35). Equation (4.4-35) is replaced in the FLEXSTAB system by the expression 

{ a )  = cP’lTEs’) (4.4-37) 

where 

Equation (4.437) is introduced in lieu of equation (4.4-35) because the operation 

appearing in equation (4.4-38) may f:*il to yield the total mass-inertia of the aircraft as shown 
by equation (4.2-26). This tailure occurs when approximations. described in the following, are 
introduced into the nodal mass and rigid body mode shape matrices: when these matrices con- 
tain approximations, equations (4.4-36) and (4.4-37) yield results that only approximate the 
desired results, viz., in the case of equation (4.4-36btt.e incorporation of nodal inertial 
forces-and in the case of equation (4.4-37)-the incorporation of a mean reference frame. The 
reasons for choosing equations ( 4 . ~ 3 6 )  and (4.4-37), 1s the best approximations, are 
cxplaincd in the following. 

4.4.4.1 Rcditctioon oj’the ttodul dcgrcc-y offrecdot)i.--As notcd i n  scction 4.4. I. the I‘inilc 
element niodel ot thc structure is nearly a1w:tys dcscribed i n i t i a l l y  i n  terms of ;I set of degrees 
of frcclloiii that contain the set { b ]  ;IS 3 subset. T i c  dnictural matriccs supplicd to the FLEX- 
STAB system itnd listcd a t  rhc beginning of this section ;ire tllc r.:sult of  ;I rct11rt.l ion process. 
The choice of thc particular rcduction proccss used is :it tlic discretion o f  the l ~ 1 - I ~ X S l . A B  sys- 
tcm iiscr, but special at t t  tiun niust be given t o  thc rcduction process c h m x  f o r  ~ ~ r l t a i n i n g  thc 
nod;il mass matrix. [ ms 1 .  



Using the notation of table 2a of reference 1-2, the nodal degrees of freedom { 6) corre- 
spond to  those denoted as ( ~ 1 ) .  These degrees of freedom are a subset of { ug }, whose 
members are the set of all possibie physical components used in modeling the structure. The 

. reduction to { ul)  involves threc operations: ( 1 ) elimination of (urn) by multipoint con- 
straints; (2) elirnir.ation of ( us ) by single-point constraints; and (3) elimination of ( uo) and 
{ ur } by structural partitioning. Letting, as in section 3.3 of mfereiicc: 2- 1,  

the stiffnes and rnm matrice5 f o r  the shucture corresponding t:: :!axe Ccgrccs of freedom are 
denoted as [ K 1 and [M 1 ,  respectively. The coiltents of section 3.5 of reference 1-2 lx describe meth%s For reducing the stiffness and mass matrices to those given as [Kaa] and 
[Ma, J in terms of the degrees of freedom defined as 

and a further reduction to [KII] and [MII ]  is an obvious extension of the contents of section 
3.5 of referewe 1-2. 

4.4.4.2 Apprositnure III(ISS niurriu. - I t '  the rcdution metbods of section 3.5 of refcrence 
1-2 are used i n  cbtaining the niatriccs supplied to the FLEXST..,B system. tiicii thc opcrations 
shown by equation (4.3-36) anti by cithr'r cquation (3.4-35) or (4.3-37) Icad to ;I correct nican 
reference fwnic itild correct incrtial forccs'at the nodes. I n  practice. howcvcr. thc nodal n i i  s 
matrix is cot always the result of the rcduction proccsscs of thc cited rcfcrencc; the mass 
matrix may bc the rcsult of a11 ad hoc luniping of t h c  iiiasscs a t  t l ic .  tiotlcs- thc luriipinp 
proccss being hascd on ciigi11ccri11g judgn ic i i t .  May.; inatriccs gcncr:itcd iii this nianncr :ire c011- 

sidercd approxiniatc bt:c;iiisc tlic npcrations 1961 ' [ i i i 6 !  I&,] IIILIS' n o t  I t 4  to the to ta l  
mass-inertia matrix shown !~y  equation (4.2-20). 

- 
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4.4.4 3 Computation of the mati reference framc-Nodal displacement relative to a 
m a n  reference frame is described in section 4.2 as 

{til = IS’} - ~ C ~ , 3 C M I - 1 C T S l T C m , l { 6 - )  (4.4-39) 

where 

C M 1 - 1 C ~ , ~ T ~ r n , l ~ 6 ’ )  = {B}, (. i.4-40) 

cf., section 4.2.2.5; hence, as shown by equation (4.2-30), 

( 6 )  = (6’) - C$&IEB} 
These expressions a x  valid if the nodal mass matrix contains no approximations; but if the 
nodal mass matrix is approxiniate and does not satisfy the rdation 

with [ M] given by equation (4.2.26), then the values of the matrix ( B } tail to yield nodal dis- 
placement components { h )  measured relative to a mean reference frame. 

In the FLEXSTAB system analysis, the nodal displacemmt components { 6 )  must satisfy 
the mean reference kame constraint conditions shown by equatior! !4.2-23): thus, when 
equation (4.439) is substituted intc equation (4.2-23), there results the folloving matri:. 
expression which must vanish: 

T CT,I Cm,I{6I (4.44 1 ) 

If the total mass-inertia matrix. [MI, i s  replaced by [s6 I ’ [111~.. 1.5&] as in eqiiation (4.4.-37), 
then the right-hand member of equation (-! 4-41 ) vanishes, showing that eqiliitioi1 (4.4-37) 
describes nodal displacement relative to a mean referciicr: fra1.w as rcqiurcd. 

4.4.4.4 Compumioti oj‘thc uodd iricrriul jimc..: --Thc incrtial forces at tlic nodes, 
related to rigid body acceleration. are givcn by 

arid, from equiitions (4.4-36) and (4.2-53). 

whcrt., :is shown i i i  section 4.2.2.5. 



repnsents rigid M y  acceleration. Equation (4.443). therefore, map be expresxd as 

and the right-hand member of equation (4.4-43) is seen to describe the inertial forces at the 
nodes arising from rigid M y  acceleration. 

4-4-43 Deletioti of aero&nmic forces resulting f i m  rediiced degrees of freedom. -The 
: degrees of freedom at thin and slender body nodes can be rcduced such that 

- -  
a 

%No - -  
a d  

w 

withc..-lt deleting aerodynamic forces, cf., section 3.5.1 -2 and euation (3.5-39). If they are 
further reduced, then the resultant aerodynamic forces computed from equation <4.2-49), Uiz., 

will not bi, q u i 1  to the values 3f these fcrces given by eqiration i3.5-6). This defect arises 
from the fact .hat 

when [PT] fails U, relate to at least the deerws of frec'doni shcwn by equation (3.4-46). The 
defect leads t o  nbd b **. decelerations (B }. which arc' ir. error. In this case. the inerthl forces 
d c ~ r i k d  by ei 
equation (4.4-367m= also in error. 

' 5  

1.445) and introduced into the FLEXSTAP system analysis by 

Thc crror in the iiirrtial iorccs is i i n x d a b l c  when tlir drgecs  of freedom arc less tnan 
those shown by cquation (4.4-46); but in most cases of practical interest. the error has an 
insignificant cffcct on the stability and>+ perfornicd by the FLEXSTAB system. Usually. 
aircmft slciidcr body stntctural coniponcn:-; 3 i C  very stiff i n  the X-d'ri'ction comparc'd with 
stiffncsscs in  tlic Y- and Zdirections. and thin lwdy stnicturd components arc usually wry  
stiff in the X and YN directions. I t  is l l ic  X aiid 1' 
that arc usually dclctrd. i.c.. rt4ucc.d I'roiii 
froni thc i;iass m t r i s .  The X and YN coin~pmcnts of tlic incrtial forces ;it tlic noilcs arc tlii'ii 

in crror. hut tlic !argc stiil'ncsscs of liic structiiral coniponciits in tlic X-tltrcctioii Icd  t:, 
iicgligiblc dclorni;ttion ;ntlucnc:iii; tiic stability clcrivalixs. 

~ .mpon~' i i t s  of displacement at tlie nodes 
Ilcsibility iiiatris and citlicr dclctcd or rcdiiccd r\r 



4.4.5 Requirements That Supplied Structural Matrices Must Satisfy 

4.4.5. I hrdinate  system -The supplied matrices must be expressed for nodal compo- 
nents of force and displacement expanded on the ESIC coordinate systems described in 
section 4.4.2. Geomctric locations of structural node points must bc cxpressed in the ESIC 
coordinate systems, 

4.452 Synmetric and arrtuymmetric fonns. -The supplied matrices must be expressed 
using the simplification offered by having required the aircraft to have a plane of symmetry. 
scction 4.2.5. They are expressed. therefore. in terms of nodes located only on and to  the 
right of theplane of symmetry. and tlrey are generated in two parts-symmetric and anti- 
symmetric-corresponding to two ets of boundary conditions applied to nodal force and dis- 
phccment components at the nodes on the plane of symmetry. See section 4.4.1-4. 

4-4-53 AdniissiMe nodal degrees offieedom.-The supplied matrices are assumed to  be 
in terms of three translational degrees of f d o m  at each node o r  in terms of the specific sub- 
sets of these degrees of freedom. Sze sections 4.4.1 - I ,  4.4-1 -2, and 4-4.1.9. 

4-4-54 Flexibility matris requirernents.-The supplied flexibility matrix [C] is assumed 
to be nonsingular, i.e., it is assumed to  describe the flexibility of the structure relative to  nodal 
constraints that constrain the structure against rigid body motion. As noted in sections 4.2.2.5 
and 4.2.3.1, the choice of constraining. nodal degrees of freedom, viz.. ( 6 ~ )  of equation 
(4.2-59~, is of no consequence provided that the symmetry requirements of section 4.2.5 are 
satisfied. 

4-4-55 Frce vibmtion mode shupes.-The free vibration mode shapes [e6] are assumed 
to be generatid for the unconstrained structure. See section 4.2.4. I .  

4.4.5.6 Constmiiiing degrees of freedom-None of the a:gplied matrices is assumed to  
contain the constraining degrees of freedom (4JR}- See section 4.1.3 I .  

4 - 4 3  7 Nodof itruss murn~v.-The nodal mass matrix [mb] is unrestricted in that it may 
contain offdiagonal masses representing inertial coupling b:tween nodes. Nodal masses at 
nodes on the plane of symmetry are assumed IO hwe VJIU~S appiopriate to the simplification 
of section 4.2.5; i.e., the values for masses at nodes on the plane of symmetry are assumed to 
be one-half the values of these masses when both halves of the aircraft are included in the 
computation. The total, equivalznk point mass represented by [m I .  therefore. is expected to 
be one-half the total aircraft m u .  Also. the nodal masses associated with tlie ( 6 ~ )  degrees of 
freedom must be distributed to tlie translational dcgrccs of frwdom of( E ) .  or this mass will 
be neaected in the analysis. When there are less than tliree dcgrces of freedom st each node. 
the incnial forces may bc in error. See section 4.4.4. 

- 

6 

4.3.5..5' Rigid hod\. rriodc slrupc~ iiiu1ri.v. -The rigid body n i d c  shape mxtr i s  1 s61 niay be 
genemed either internally or externally to the FLEXSTAB sysrcm. Internal gcncntion is 
brrscd on tlic geometric locations ol' thc nodes ol' tlic structure. and  tlic rcailting rigid body 
mode matris is  of the form given by equation (4.2-1 6 )  The m:rhod for cstcrn:il generation is 
obviously ;it rllc discretion of tlir user: lioivcver. bx;iusc of il~.c l'orni ol' equation ( 4  '-53 1. the 
cstcrn;illy gcncr;itcd rigid h d y  mcntcs must dc3cribc rigid boJy 11lc)i ion aboiit [lie ai. c ' t  
center ol' n ia~ , .  
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4-4..5.9 Totul niassinertm maniu.-Thr elements of the total mass-inertia matrix. equa- 
tion (4.2-26), are assumed to describe the ngid body inertial characteristics of the entire air- 
craft (Le., of both the right- and left-hand sides) for rigid body motion about the tenter 
of mass. 



5.0 STEADY, REFERENCE FLIGHT CONDITION 

5.1 INTRODUCTION 

The objective of this section is to derive the method used in the FLEXXAB system to 
evaluate static stabilitj and trim characteristics. Throughout section 5 the aircraft is assumed 
to be in a state of steady flight, Le., a state of motion such that 

where U. V. W, P, Q. R are the translational and rotational components of velocity in the 
Body Axis System, equation (2-2-3)- This steady shte of flight is termed the reference flight 
condition. and may consist of any steady or quasi-steady maneuver chosen by the FLEXSTAB 
system user. Examples of the reference !light condition am truly steady maneuvers such as 
rectilinear flight, steady sideslip- level turns. and helical turns. In addition. the reference flight 
condition may cmnsist of a quasi-steady maneuver for which the restrictions imposed by equa- 
tions (5.1-1 ) are only approximately satisfied, e-g. a steady pull-up. 

The equations of motion for the steady. reference flight conditio9 are introduced in sec- 
tion 5.2. The equations of motion expanded on the Body Axis System. section 2-22, are six 
in number and contain I 2  trim parameters. As shown in section 5.2.1, the reference flight 
condition is specified by specifying the values of six of the trim parameters. The remaining 
six frim parameters-termed the trim variables-are determined by solving the equations of 
motion. This operation consists of solving the trim problem fonnulated in section 5.2.2. 

The aerodynamic derivatives* and the corresponding forces acting on the aircraft in the 
steady reference flight condition are derived in sections 5.3 through 5.3.4. This derivation is 
based on the linear aerodynamic and structural theories of secti ins 3 and 4. but section 5.3.5 
describes a method used ii1 the FLEXSTAB system for introducing the effects of nonlinear 
aerodynamics. Section 5.4 contains a derivation of the equations which introduce the effects 
of the propulsion system on the reference flight condition. Sections 5.1 through 5.4 contain 
all of the results needed to expn& [he equations of motion in the form which poses the trim 
problem. 

Two mcthods for solving the trim problem are derived in sectioti 5.5. One is a straight- 
fonvard algebrdic solution used when the equations of niotion arL linear functions of the trim 
variables. The second IS used when the equations of niotion are nonliricar functions of the trim 
variables. This latter method is based on a Newton iteration formula. reference 5-1. taking into 
account nonlinear rigid body airmft  dynamics as well as nonlinear aerodynamics. Tht' non- 
linear aerodynamics are introduced into the equations o f  niotion u5ing a tabular schcnie 
dclscribcd i n  section S.S.4 Finally. sections 5.h xid  5.7 cont;tin tlic derivation of the formulas 
whkh describe the following static stabiriiy a i d  trim ch;irxteristic: 

The static stabi!ity derivatives* (expanded 011 [lie St:thility Asis Sys:em, section 2.2.5 1: 
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The control effectiveness: 

e e .: e 
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m6 
‘L6 ’ ‘D6 ’ C  

The following static stability parameters: 

0 staticmar@, 
0 maneuvermargin, 
0 neutral point, 
0 maneuver point, 
0 load factor, 
0 stickspeed stability, and 
0 elevator angle per g. 

In addition, section 5.7 contains a derivation of the formulas determining the static elas- 
tic deformation, static Imds, and static lifting surface pressure distribution. 

None of the derivations contained in this section are complete in themselves; they make 
extensive. use of quantities derived in sections 2.3, and 4. 

5.2 EQUATIONS OF MOTION FOR THE 
S E A D Y ,  REFERENCE FLIGHT CONDITION 

The equations of motion for an aircraft in steady night are given in vector form by equa- 
tions (4.2-54) and (4.2-55). Expanded in scalar form on thr. Body Axis System, section 2.2.2, 
these equations appear as follows: 



The subscript I denotes evaluation in the refel :rice flight condition: and the right-hand mem- 
bers are mmponents of force and momLnt arising from the aerodynamics and the propulsion 
system: these components are dependent on the elastic deformation. 

Equations (5.2-1 ) are functions of the six velocity components. equations (2.2-3) and, 
in addition, the right-hand members are functions of a thrust amplitude setting TI and the 
following aerodynamic control surface settings: 

-6eI- - pitch control 

6al - roll control 

6r1 - yaw control 

Assuming that the inertial and aerodyriamic characteristics of the aircraft are specified. the 
equationscf motion may be regarded ascontaining 12 parameters-U,, VI. W1, Pi, Q I ,  R1, 
9 1. 81. TI, 6e 1 .6a  1, and 6r 1. The reference flight condition is chosen by the FLEXSTAB 
system user by specifying the values of six of these parameters; and the equatrons of motion, 
equations (5.2-1 ), then consist of six equations in terms of the remaining six unspecified 
parameters. Aircnft trim is computed by solving thc six equations for the six unspecified 
parameters. 

5.2.1 Specification t d  the Refexncc Flight Condition 

The FLEXSTAB system user is required :o specify the following paramzten: 

I )  u, forward velocity 

2 )  P I  - roll r i te  

3) Q1 -- pitch r a v  (or. ;tltcrnately. Iorrd ixtor. cf..  stction 5.7.1 ) 

6) Either T I  thrust amplitude setting or 7 ,  = el - tm WI!Ul  - tlight path rrtiglc. 
figure 5.2-1. 



The sYs_tem computes the following trim parameters: the control surface settings (&el, 6a1, 
&I). the angle of attack (al = tan'' (WlfU,)), the angle of sideslip (f3; = t a d *  (Vl/Ul)), and 
either the flight path angle yl  or the thrust amplitude setting TI. 

= translational velocity components in the plane 

'1 = flight path a w e  

81 = pitchattitude 

a = total eeleration vector 

I 
Principal 
normalto - 
flisht path y Fligttt 

FIGURE 5.2-1.-FL:GHT PATH OF AN AIRCRAFT 

5-21. I Coordinated mwreuvers. - Selection oC the reference flight condition a5 a coor- 
dinated maneuver requires special consideotion. A coordinated maneuver is one in which the 
total acceleration of the aircraft is a vector lying in the plane of symmetry of the aircraft. The 
total acceleration is the vector sum of the gravitbtional acceleration and the acceleration due 
to flight path curvature, figure 5.2-1, where the acceleration due to flight path curvature is 
given by the following expression: 

c - +  
il * 3  

3 C a N n P 
(5.2-2! 

A 

where Vc is the~elocity of the aircraft along tlic flight path. p is thc radius of !light path 
curvature. and N i s  tlic principal norinal to tlic flight pstli, rcfcrciicc 5-1. p. 291. The gravi- 
tational acceleration is givcn by 



The total acceleration therefore is the following vector sum: 

Following the usual practice of trimming an aircraft for a coordinated maneuvcr, the bank 
angle 91 for the reference flight condition is selected so that the vector 2 lies in the plane of 
symmetry of the aircraft. _ _  

' hen  an aircraft is undergoing a maneuver which involves a change in heading, the bank 
angle I quired to ha\ 2 the total acceleration vector lie in the plane of symmetry must be 
found by iteration. Even for a reference flight condition consisting of a steady level turn, 
choice of the appropriate bank angle is complicated by the fact that the equations of motion 
=.expressed in terms of the Body Axis System. The bank angle 9 is a rotation about the XB 
axis, equation (2.I-l), and the orientation of the XB axis relative to the plane of the turn is 
govemed by &-me of the unspecified parneters in the trim problem. The appropriate bank 
angle is therefore not known a priori. - 

For the case of a steady, level turn the flight path angle is zero (rI = 0); hence, 81 is 
equal to the angle of attack, a1 = tan-l WI/UI. The FLEXSTAB system user may estimate the 
value for aI and compute the input bank angle and the rotation rates PI, Ql, R1 from the 
following formulas; 

u:(l+zII> 
tan41 = s ina 1 

Pg 

or 

(where p is the turn radius and is tste of change of heading angle) and 

1'1 = +sinal 

(5.2-5) 

(5.2-6) 

The values of U 1 ,  P I ,  Q I ,  R I ,  @I,  and rl obtained from thew forriiulas lead to values of V 1 ,  
\VI, 6 e I .  6 a l .  6 r l ,  and T I  which produce ;I steady, refercncc flight condition; but. unless the 
estimated value of a1 is esactly equal to that computed in t h i  trim problem. the computed 
rcferencc tlig!it (.onciitioii will bc a steady t u r n  ~ ! i i c h  takcs placc with a change in altitudc. 

. The values of the velocity coniporients V I  a i d  \VI will, i n  gcncral. lead to a helical flight path. 



even though the flight path angle is set to zero, and the total acceleration vector wil l  not tie in 
the plane of symmetry. Trim for the resulting reference flight condition, therefore, requires a 
lateral control deflection to produce a force contributing to the Iiiteral acceleration of the 
hrm. 

The steady, level turn may be more closely approximated by recomputing the input data. 
The angular rates and the bank angle are computed a second time using equations (5.2-5) and 
(5.24) and a new estimate for the vzlue of angle of attack. This process may be repeated until 
the desired reference flight condition is approximated with the desired degree of accuracy and 
the trim problem is regarded as solved for the steady, level turn- 

5.2-1.2 Quasi-steady maneuvers.-The equations of steady motion, equations (5.2-1), are 
used as approximations for evaluating static stability and trim of an aircraft in a reference 
tlight condition when the pitch attitude 81 and/or bank angle 
maneuvers represented by these reference flight conditions, e.g., pull-ups and rolling flight, 
involve motions which violate the assertions of equations (5.1-1) because the rotation rates PI, 
Q1, R1 fail to satis@ the following refations: 

change with time. The 

i 1  = Qlcos@r-R1 s i n #  = O  

6 1  = PI + (Qlsin@l + Rlcos@l)tanel = 0 
(5.2-7) 1 

These equations are satisfied by the rotation rates of steady turning flight, equations (5.2-6), 
but they yield non-zero values for steady rolling flight and steady pull-ups. Even though equa- 
tions (5.2-7) are not satisfied, trim and static stability are computed on the basis of equations 
(5.2-1) and the reference flight condition is considered to be quasi-steady. 

Consider a typical example-a steady symmetric pu;l-up with pitch rate QI.The pitch 
attitude +gular rate is given by the first of equations (5.2-7) as 

The equations of steady motion, equations (5.2-1 1, evaluated for the pull-up yield the fol- 
lowing: 

MQlG!1 + Mg sin01 = FXBl 

(5.2-8) 

C = MyB 

Q = M 

1 

"ZE 1 



The gravitational terms in these equations are varying with time; therefore, the velocity com- 
ponents U1 and W1 must also be functions of time, contrary to the assertion of Equations 
61-1) .  This contradiction is ignored and equations (5.2-8) are used 3s a.basis for $.valuating 
the static stabfity and trim characteristics. Inertial force components MU1 and MW1 and 
corresponding unsteady aerodynamic force components are neglected as small, thereby leadins 
to the quasi-steady approximation. 

5.2.2 Formulation of the Trim Problem 

The equations of steady motion, equations (5.2-1), are rearranged in this section to for- 
mulate the trim problems solved by the FLEXSTAB system. The FNXSTAB system user has 
the option of specifying either the flight path angle or the thrust amplitude of the reference 
flight condition, and may a!m solve either a nonlinear or a linear trim problem. These options 
require four distinct forms of the equations of steady motion. 

5.2.2-1 Nodinem trim problems-The nonlinear forms are as follows: 

(1) Specified tlight path angle 71, 

* 
where aI E tan" Wl/Ul  and 81 i tan'' VI/Ul .  

(5.2-1 0 )  



Equations (5.2-9) and (5.2-10) are clearly nonlinear from the trigonometric functional 
dependence on a and 8. Additional nonlinearity may arise in the components of force and 
couple which are thrust dependent and appear on the right of equations (5.2-9) and (5.2-10). 
These terms may be nonlinear functions of the thrust amplitude as a consequence of the gyro- 
scopic couples from rotating engine parts. 

5.2.2.2 Nonlinarr aerodyEamic forces. -The components of force and couple arising from 
the aerodynamics may also be nonlinear functions with the following dependence: 

where F f i ~ ~ .  F&,, M$B, are force and moment components acting on the aircraft when 111 
motion vdriables and control surface setting except U1 are set at zero. 

5.2.2.3 Lineur trim problent.-Tht: linear trim problem corresponds to  the linear, first- 
order aerodynamic theory developed in section 3. As mch, the angles of attack and sideslip 
(a,B) and the pitch attitude (8) must he so small that their products with one another are 
negligible. With these approximations the equations of steady motion, gven by equations 
(5.2-9) and (5.2-10), reduce to the following aoproxirnations: 



where 

(2) specified thrust amplitude setting TI, 

(5.2- 13) 

For the case af specified flight path angle the gyroscopic couples due to rotating engine 
parts can IIQ longer be nonlinear functions of tlv: thrust amplitude T I .  The components of 
force and couple produced by the propulsion sy itcrn thcrcforc. becomc lii:cx fuiictiot1s of 
Ti. ~ . g . .  



5.2.2.4 Linear aerodynamic forces. -As already noted, the linear aerodynamic theory 
requires that the components of aerodynamic force and couple be linear functions of the air- 
craft's motion and the control surface settings. Also, motions of  control surface settings which 
are symmetric with respect t o  the plane of symmetry of the aircraft can give rise only to 
symmetric distributions of aerodynamic pressure, while antisymmetric motions and control 
surface settings produce only antisymmetric aerodynamic pressure distributions. The non- 
Linear aerodynamic terns  of equations (5.2-1 l), therefore, reduce to the following linear 
forms: 

(5.2-1 4) 

el  
A + 18 a1 + rP Q~ + M~~ A 6  

MA YB 1 = MYBo YBa YBQ de 

where the coefficients of the motion variables and control surface settings are all constants. 
These coefficients constitute the aerodynamic derivatives of an aircraft and as indicated in 
equation (5.2-1 4), the aerodynamic derivatives are coefficients i n  3 truncated Taylor series 
erpansion about the flight condition wherein all  trim parameters arc set to zero except U I .  
The aerodynamic derivatives are, therefore, distinct from the stability derivatives because 
[lie latter are the re\& nt' perturb:itions about the reference tlight condition wherein all of 
the trim parameters may be differeirt froin zero. 

- 

5.2.2.5 ilerodjvrurrric derivuarives. --The aerodynamic derivatives appearing as coefficients 
of the motion variables and control surface setti!igs in equations (5.2-14) are separated into 
two classes as follows: 

Longittidinal acrodyiiamic dorivatives: 

(5.2-15, 



Lateral-directiot?al aerodynamk derivatives: 

MXBp A MXBK A MA XEda MA YBdr  

Longitudinal and lateraldirectional classifications denote uncoupling-ot' the aerodynamics as ,I 
result of linear theory and the assumed symmetry of the aiicraft configuration -sections 
3.4.1 -5 and 4.2.5. The following section, section 5.3, presents a derivation of these aeio- 
dynamic derivatives from the results of sectims 3 and 4. This section also presents tht  
methods used in the FLEXSTAB system to extend equations (5.2-14) to the nonlinear case, 
equations C5.2-10), by the incoxporation of empirical data. 

5.3 AERODYNAMICS OF THE KEFERENCE FLlGliT 
CONDIT!ON-AERODYN AM IC 9 E  RIVATI V ES 

The reference flipht condition aerodynamic fc . .. I f  . h n  body mean csrt'aci . -.,e;s 
and at the slender body segments of a contiguration aii: . , ~ v & ! , . d  in section 3.5. In tkc 
present section these aerodynamic forces are resolvecl irito :he COrilpOi7::nts of aerodynamic 
force and couple appearing in equations (5.2-! ! ) and :5.2-14)-the ae;odynar?.ic forces x t i q  
on an hicraft undergoing thz steady motion of the reierenze flizbt condition. 

5.3.1 Sumntwy .:f Linear Aerodynamic and Structural Theories 

The aerodymmic equations which determine the aorodynamic iorcrs i n  the steady. ref- 
erence flight condition are obtained from eqilations deve1ope.I in section 3.5; namely, the 
following: 

The aerodynamic pressure transformation: 

(3.558) 

5-1 I 



and the steadv flow incidence: 

The structural quatiom which determine the deformed shape of the k r a f t  in the steady, 
rekence flight condi.ion are given by equations (4-2-64), (4.2-101), and (4.2-1 16) and 
42-1 13) of  section 4.2, viz: 

The structural equations for steady motion: 

{ a )  =- [i] 
- 1  1 

the umber deformation transformation: 

- the aidodd transformation: 

and the propulsion system loao trmsformations: 

{QT} = [NAFI{T) 

(4.2-64) 

(42- lOl)  

(4.2-1 16) 

5.3.1. I Litwar slnrctiiral c.qiiatbn. -The structurd equations listed above are cmibincd 
into a single expression describing the camber defotniation arising from the aerodynamic arid 
propulsion system Lmxs of the reference flight condition: 

- -- n fi. ( a * )  = ccs,3 1 ( f , ) .  - .  .I u e G 1  1 fr.:'=l 1 
1 (5.3-1) 



where:' 

5.3.1.2 Lineor a e d y m m i c  equations-A simplifying approximation is introduced in the 
aerodynamic pressure transformation to obtai; . an expression which is linear in the unspecified 
trim variables. This approximation consists of neglecting the leading edge correction to the 
aerodynamics (see section 3.4.1 2). Using this approximation, the terms multiplying the 
matrix [ Tml in equation (3.55'8 J arc denoted as ( fA) and combined with equation (3.5-59). 
The result is expressed as follows: T 

where 

(5.3-2) 

(5.3-3) 

and { $} = all remaining terms exclusive of the leading edge correction term contain- 

ing (q1- 
5.3- 1.3 Combined aerodytmtnic and sfructurul equufions.-lntroducing the transformation 

(3.5-32) 

the stru -turd equation. equation (5.3-1 1. is combincd with equation (5.2-3) so as to 
eliminate (8. 
to obtain 

, 
and the resultiag expression is solvcd for the aerodynamic forces F4 

- 
where 

(5.3-5) 



is termed the ‘‘aemektic matrix” for the aircraft. Combining equation (5.34) with equation 
(5.3-2). the aerodynamic furas on the flexible aircraf? in the steady, reference flight condi- 
tion (including the aerodynamic fonxs resulting from propulsion system i n d u d  elastic 
deformation) are found as 

(5.3-7) 

5.3.2 Aerodynamic krivatives for a Flexible Aircraft 

The terms appearing in the linear aerodynamic equations, equation (5.2-14), follow 
directly from the linear theory represented by equations (5.3-6). (5.3-7), and (5 .34 )  above. 
The components of total aerodynamic fore and couple acting on the aircraft are generated 
fmni equation (5.3-6) using the rigid body mode shape matrix, equation (3.5-6). and the 
transformations given by equation (3.5-30) and (3 5-65). Equation (3.5-30) transforms the 
aerodynamic foxes ( 
tem, i.e., 

from the local body axis systems to  the Reference Axis Sys- 

(5.3-9) 

’These forcrs. e.iclusive of the aerorlastic effects of the propulsion system forcrs are resolved 
into Rzferencc Axis System coniponrnts of total force and couple at the aircrdft ccnter of 
mass as 

i5.3-IO) 
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and these components are transformed to the Body Axis System as 

Where 

CJl =, 

- 
-1 

-1 
zeros 

1 
1 -  
-1 zeros - -1 1 

(5.3-1 1) 

The quantities appearing in equation (5.2-14) as coeffiL5ents of the velocity components and 
the control surface settings are constructed from thc *oansion of equation (5.3-1 I )  obtained 
by introduangequations (5.36) through (5.3-8). 

5.3.2. I Longitudinal aemdymnic derivatives for Jexible aircrnjk-All of the structural, 
aerodynamic, and geometric chaiacteristics are taken, I this section. to be for the symmetric 
aircraft case (sec sections 3.4.1 .5 and 4.2.5). As a result of this assump on e only non-zero 

These are components related t o  the longitudinal aerodynamic derivatives listed in section 
5.2.2.5. They are derived from equation (5.3-1 I )  by expanding the aerodynamic forces ($II  
through the introduction of equations (5.3-6), (5-3-71, and (3.445). The aerodynamic deriva- 
tives appe3r in the espanded quation as the coefficients of the trim parameiers. The espan- 
sion is based on the fcilowing equation: 

components of force and couple generated by equation (5.3-1 1) are FzB. li FZB, *!t and MyB- A 

and uses the identity 

rLlsul!inp cocfticieiit iiiatricrls are as idiows: 

E 

(5.3-12) 
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whea - 

and 

(5 -3-1 3) 

(5.3-1 4) 

(5.3-1 5 ) 



5.3.2.2 Lared-direcfiod aemdynamic derivatit*es for a flexible aircm f f -  -All of the 
structukl, aerodynamic, and geometric characteristics are taken in this section to be for the 
antisymmetric ifcraft case-sections 3.4.1 -5 and 4.2.5. As a result of this assumption the 

A A  only non-zcm components of force and couple generated by equation (5.3-1 I ) are FyB MX 
and M A .  Expanding equations (5.3-1 1 ) following the approach of section 5.3.2.1, the later8 
directional aerodynamic derivatives are found to be as follows: 

(5.3.17) 

(5.3.18) 

(5.3-20) 



E 

(5.3-2 I ) 

5.3.3 Linear Aerodynamic Forces fnr a Rigid Aircraft 

For the CCLSC: of a rigid aircraft the elastic deformation {e*}, vanislies in the expression 
for the lifting pressure coefficients, equation (3.5-59). The appropriate linear relation for the 
aerodynamic forces is obtained from equations (3.5-58) and (3.5-59) by neglecting the leading 
edge correction to the aerodynamics and by setting {e*} to zero. The result is as follows: 

where, as in equation (5.34). the aerodynamic forces due to  isolated and interference aero- 
dynamic thickness are given by 

and ( 5 . 3 3 )  

5.3.3. I Lorigitirdirial aerodyriamic de.rivatives for a rigid aircraft. -The aerodynamic and 
geometric characteristics are taken in this section to be for the symmetric aircraft case (see 
section 3.4.1.5). As a result of this assumptiop the only non- ero components of force and 

namic derivatives listed by equation (5.2-15) 9r the c;ise of a ngid aircraft, thercfore, follow 
from equation (5.3-22) by introducing the expanded form of thc flow incidence matrix. 
equation (3.545). arid taking the ar'rod> narnii Jcrivativcz to bc tlir' iocttiiiciits of tiic niotion 
variables and the control surfxe settings. The results are as follows: 

couple generated by equation (5.3-?' --) are Fy, FZB. A and M i B .  The longitudinal acrody- 

(5.3-113) 

i - I S  



where 

R 
(5.3-24) 

( 5  -3-25) 

- - T1 CGexIIyde) I::] (5.3-26) 

YB6e R 

5.3.3.2 Luterafdirccrionaf uerodvriatnic derivativesfor a rigid aircraft. -In this section the 
aerodynamic and geometric chardcteristics of the aircraft are taken to  be for the antisym- 
metric case (see section 3.4.1 S). As a result the non-zero components of force and couple 
generated by equation (5.3-22) are F B, MXB, and MZB: The lateraldircctional aerodynamic 
derivatives, listed by equation (5.2-1 f? ) for the case of a ngid aircraft, therefore, follow from 
equation (5.3-22) by iptroducing the expanded form of the flow incidcncc matrix, cqurttion 
(3.5-45). and by identifying the acrodynamic dcrivativss :IF thc cocfticicnts of thc niotion 
variables and control surface settings. The results are as t'ollows: 

A A 



(5.3-27) 

where [GeR] is the matrix defmed by equation (5.3-23). 
r ' 1  

(5.3-29) 
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5.3.4 Aeroelastic Increment to the Aerodynamic Derivatives 

The aerodynamic derivatives are derived in section 5.3.2 for a flexible aircraft and in 
section 5.3.3 for a rigid aircraft; in this section it is shown that the flexible aircraft aerody- 
namic derivatives are composed of the sums of two quantities-the rigid aircraft aerodynamic 
derivatives and an increment due to  static aeroelasticity. This composition of the flexible air- 
craft aerodynamic derivatives is deduced from an expansion of the aeroelastic matrix given by 
equation (5.3-5). 

5.3.4.1 E.r!xrnsion of flie aeroclastic tmzfri-v.-The matrix [Go 1 .  which appears in each 
of the formulas for the flexible aircraft aerodynamic derivatives, contains the inverse of the 
aeroeiastic matrix, Le., 

The inverse aeroelastic niatris is espanded as 

Hencc, it follows tha! 

(5 -3- 1 3) 

(5.3-30) 

(5.3-3 1 ) 

where [COR] is the matrix operator appearing in each of the forniulas for the rigid aircraft 
aerodynamic derivatives of section 5.3.3 and 

The expansion given by equation (5.3-31) leads to thc desired result-an expansion of the 
tlexiblrl aircraft aerodynamic derivatives into a rigid component plus an aeroelastic incrcnii n t .  

/laving dciiioii:;tratcd that  t l ic  L * \ p i i i s i o i i  ou [(io I givcii by iquatioii ( 5 . 3 - 3  1 ) is t l icw-  

rctically sound, thc acroclastic increment is obtclincd by a dircct computation. Writing 
cquatioii (5 .3-3 I ) 3s follows: 



reference to  equation (5.3-13) and the Liefinition of [GeRJ following equation (5.3-23) 
shows that the aeroelastic increment call be computed as - 

CG,,] = cGT1[T,FlCAD-13 1 [A,,] 1 (5.3-32) 

where 

nlis formulation of the matrix [AG~)EI poses a much smaller computational task than that 
posed by the preceding formula. 

53.4.2 Espairsion of the longititdiital aerodynamic derivurives for a flexible uir- 
crufi.-Substituting equation (5.3-31 ) into each of the formulas appearing in section 5.3.2.1 
leads to the following expansion of +he longitudinal aerodynamic derivatives far a flexible 
aircraft: 

where 

+ 
(5.3-33) 

+ 

(5.3-34) 



where - A -  

a A FXB 

E 

- -  
A 

FXB Q 

FA 
ZBQ 

$a Q 

E 

- 
A 

FXBQ 

F A' 

ZBQ 

A 
MY BQ 

- 

+ 

K 

+ 

v .. 

- - 
A 

A F ~ ~ Q  

ZBQ 
A F ~  

A 
*'YBQ 

- - 

(5.3-35) 

E 

(5.3-36) 



where 

53.43 E.rpansio 
craft- -Substituting q 
leads to the following 
ble aircraft: 

E 
53-43 E.rpansion of the lateral-dircctional uerodynaniic deriwtives for a flesible air- 

craft--Substituting quation (5.3-3 1 )  into each of the formulas appearing in section 5 . 3 2 2  
leads to the following expansion of the lateraldirectional aerodynamic derivatives for a flexi- 
ble aircraft: 

where 

o f the lateral-dircctional uerodynaniic deriwtives for a flesible air- 
iation (5.3-3 1 )  into each of the formulas appearing in section 5 . 3 2 2  
xpansion of the lateraldirectional aerodynamic derivatives for a flexi- 

r 

t A M 
--xi3 

fi 

r 

A M 
--xi3 

fi 

t 

E 

(5.3-37) 



where 

where 

;FA - 
YBR 

A 
IMX BR 

A 

IM" 
ZBR - - 

- -  
FA 
yaR 

MA 
XBR 

P A  

MZSR 

- 

+ 

R 

AF\ FIR -*1 
 AM^ 

x9R 

E 

3.3-34  ) 



where 

E 

The effects of nonlinear aerodynamic behrrvicr 011 the a!mxiynx:iic 4erivat ivcs arc' intro- 
duced in this section using the expansion d the derivatives appearing i n  sI :ion 5.3.4. The 
method fcr  introducing the effects of noniincar scrodynarnics on tlesiblr: aircrdt acrodynaniic 
derivatives is based on the assumption that the aermlastic component of the derivatives can h:. 
treated 3s a linear perturbation f r w i  rigid ; i i r m f t  dcrivcltives. Following this approsch the 
nqid aircnftserodynfmic derivatives are supplic.,! ! .) the FLEXSTAB systtni a% tabulatcd 
fiinctions of the trim variables. The 3eroelastic' inctLniei.ts arc i l i C n  computed by the 
.'tE;STAB s);tem using the formulas of section 5.3.4 and usiris thc cmpirical wr re i :  i t ) n  

meihods of section 3.4. I1 to impose the influence of nonline:ir acro,!).:iclniic bc!iavior o n  the 
aeroclastic increments. The empirical coircction schcmcs of wition 3.4.14. tlicrcforc. arc uscd 
in an attenipt to niodcl the iionlincar acrodynxiic. lwliavior confrihuting to rhc ;itr(xl;istiiity 
;IC a linear pcrturbatiw fro111 the aerodynamics ot' ;i rigid aircraft. Caution riiust hc c>.Lrciseil. 
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however. as this method has been given little theoretical foundation and predictions b a d  on 
the method should be used with c;ue and substantiated with extensive wind tunnel testing. 

5.3.5.1 Aemektic effects -Thc nonlinear aerodynamic terms appearing in equations 
(5.2-1 I are expanded into two terms. One represents the a e d y n a m k  of a rigid aircraft, the 
other an aeroelastic increment. This expansion is justified on the basis of section 5.3.4. Non- 
linear dewndence on the trim variabks is assumed to be contained entirely in the ripid aircraft 
tenn.t'.g-. for the it" set of valucs for the trim variablty - 

(5.342) 

where the second term 09 the right-the aemelastic incmment-is a c-onstant coefkicnt  baxd 
on the tincar theory of section 5.3. The aercelastic increment, however. may be c.orrecced for 
nonlinear aerodynamics using the techniques of section 3-4-14? but the corrections are held 
constant in the him problem. 

.5.3.5.2 -Nodinear. rigid aircraft aerodynamic derivatives. -The nonlinear aerodynamics of 
a rigid aircraft are represented in the FLEXSTAB system by tables of rigid aircraft force and 
moment dah. The tabulated data are usea to construct the cmmponents of aerodynamic force 
and moment as functions of the tnm variables? These Functions appear as follows: 

(5.343) 

Althoigh the formulas. ,.lation (5.343,. ;ire csprcssctl in t l w  llody Axis System tlic 
tabulated data arc supplied to thc FLEXSTAH system csprc>scd in terms ol' :I Stability A s k  
Systcm with origh at a rcfcrcncc point. figure 5.3-1. ;ml in tcrnis ol' lift m d  drag coiiiponciit.; 
of force --qiimfitics cxpaiidcd oil coordinates tiscd relative to tlic free strcam. 

*Sotc t l u t  Q a i d  rj niList  lw :is &*fiiiclI I : I  s'*L.lioiib 5 . 2 .  I . i i i d  >.,.2. - .  

- 3 -  ?- -  



FIGURE 53--I.-STABILITY AXIS SYSTEM OF TABULA TED DATA 

The tabulated data are expresed in nondimensional forni consistent with equations 
(5.3-3) and (5.34). The quant;Ses appearing in Equations (5.343) are therefow obtained using 
the following transformations: 

= tSDSl 

where 

and 

[:'I .-.I 

(5.344) 



where 

0 

AX 

- 

0 

bcosai 

bsirlai 

-bs k a  

bco s a  

These formulas require the tabulated data to describe the graphs shown in figures 5.3-2 
through 5 3 9 .  

In addition to the components of aerodynamic force and CTJUP~ r e p e n t e d  by equa- 
tions (5.3-43): the F L E M A B  system may be supplied with empirical values of the angular 
rate stability derivatives as tabulated functions of angle of attack. These tabulated data are 
also nondimensional and expressed in the Stability Axis System of f ~ u r e  5.3-1. The com- 
ponents of a e r o d y ~ m i c  force and couple arising from steady rotation of the aircraft me 
therefore found as follows: 

(5.346) 



FIGURE 5.3-2.4e C D  AND C, VERSUSa FOR VARIOUS LONGIT[ '3INAL 
CONTROL SETTINGS WITH &, 6r SET TO ZERO 

P .ir 

FIGURE 5.3-3.-CL, Co. AND Cn, VERSUS9 FOR VARIOUS ANGLES OF ATTACK 

WITH de, ha, dr SET TO ZERO 



FIGURE 5.3-4.-C~, CD AND C,,, VERSUS ba FOR VARIOUS ANGLES OF AUACK 
WITH be. br, f l  SET TO ZERO 

FIGURE 5.3-5-Ck C, AND Cm VERSUS 61 FOR VARIOUS ANGLES OF ATTACK 
WITH &, 6a, 8 SET TO ZERO 

FIGURE 5.3-6.-Cy, C, AND C, VERSUS C FOR VARIOUS ANGL ES OF A TTACK 
W i  TH he, ha, 6r SET TO ZERO 



“2 

FIGURE 5.3-7.-Cy, CQ, AND C, VERSUS 6a FOR VARIOUSANGLES OF ATTACK 
WITH 6e, 6r. OSET TO ZERO 

FIGURE 5.3-8.-Cy, CQ, AND C, VERSUS 61 FOR VARIOUS ANGLES OF ATTACK 
WITH 5e, Sa, p SET TO ZERO 

FIGURE 5.3-9.-Cy. C,, AND C,, VERSUS 3 FOR VARIOUS (5e MI1 TH n. 
&I, Sr, S a  SET TO ZERO 



The aerodynamic terms appearing in equations (5.2-1 1 ) are expanded as follows: 

(5.347) + A ( F ~  Q 
ZBQ E 

If the tabukited data are not complete, the componer's of ierodynamic force and couple are 
replaced by empirical or computed stability derivatives for those trim variables no1 included in 
the trim data. For esample. if fFXB)K A is given 3s a t:tbulatecl functior. ofai, Oi,  hai. hi. then 



5.4 PROPULSlON SYSTEM FORCES 

The coniponents of force and couple at  the center of inass of the aircraft arising from the 
propulsion system are expressed as 

T -  {FBI = 
. .  (5-4-1) 

The elements of t!iis colunin matris are the propulsioii system teriiis appearing i n  the I ig-ht- 
hand ii1eiiibr.n of the equations of inorion of section 5 - 2 2 .  Tlicst. terms represent not only 
the dirwt d f x t  of the thrust forces aiid gyroscopic caiiplcs of thc propulsion system but also 
an indirect effect which is neroeiastic in origin. The dkect effect is found from equations 
(4.2-57) and (4.2-1 19) as 



the transformtion matrix [ NAF] is described in sections 4.3.6 and 4.4.4. This matrix 
describes the nacelle scnterliiie forces arising from up t a  ten engines operating at  the thrust 
levels contained in the matrix { T}. 

~ 

A single thrust variableT, is introduced by letting 

1 
CNAFICTI = INPIT (5.1-4) 

where 

and 

with the quantities ki (Og i < IC) being the relative thrust levels of the individual engines. 
The thrust force and couple at the center of mass, expanded on the Reference Axis System, 
therefore, are given by 

. 

5.4.2 Engine Gyroscopic Forces 

A gyroscopic force term ( F G ~ R O }  T dwribes the sum of the direst, inertial couple fronl 
rotating cngiiic parts and the indirect, acroclastic effects. - 

The contribution to the inertial couple from the i t h  engine is given by 

wticre, t'roni equation (2 .2 -3 ) .  



A 

is the steady rotat'm rite of the aircraft in the reference flight condition. The vector hi is 
expanded on the Reference Axis System as 

(5.4-6) 

This equation describes the angular momentum of a rotating engine. The gyroscoFic couple of 
the ith engine is given by 

and its components on the Referenic Axis System are found as 

( 5  -4-7) 

(5.4-8) 

These components are formed into the matrix { !iiG}. equation (4.2-1 19), an+ ased as a basis 
for computing the aeroelastic effects of the gyroscopic couples in equation (5.3-6). 

The inertial couples of the engines have components which are equrrl and opposite to the 
gyroscopic couples. The total inertial couple from the engines is therefore computed using 
equations (4.2-57) and (3.2-1 19) 3s - 

~ 

The gyrosco ic pait of equation (5.3-1) may now be expressed i n  ternis of the Eryoscopic 
couples { MZ} as follows: 

where the second term interior to the bracket 3risc.s t'roni the aeroelastiiity. cqu;ition i 5 . 3 - 0 ) .  

I n  the FL€XSTAU system, tht  cngints ; I t  citticr sidc o f  ;I coiifiyriitiori iiitist bc syninict- 
rically l o ~ i t c d  relativc t o  the X.Z plarw. figiirc 5.4-1 : but there ;ire two ~ossiblc. c.li0icc.s for tlie 
dircction of spin  of the ciigiiies a t  cithcr sitlc-parallel o r  coiiiiter rotation. Lctting w denote 
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engine spin rate, the components of angular momentuni of an engine located on the right side 
of the aircraft are retated to those of the symmetrically located engine on the left as follows:. -._ - _. . 

for pwillel rotation, Le., WR = q, 

for counter rotation, i.e., OR = -WL, 

(5.4- 10) 

Right  engine Left engine 

Parallel rotation . Counter rotation 

FIGURE 5.4-1.-ANGULAR MOMENTUM OF ROTATldG ENGINES 

For the two possible engine rotations the components of the gyroscopic couplt. at the 
righ: and left engines are given as follows: 

parallel rotation, 
G G MXR = -QlhZ - Blhy 



counter rotation, 

(. <. 
.. 

These components constitute a had distribution on the aircrirt which is symmetric with 
respect to the X,Z plane when 

and antisymmetric v:hen 

- - 
MXL ' 'YR - 'MYL ' MZR - M Z L  (5.4- 1 ? 

id -MXL > MyR = MXL , MXR = -MXL XR' . (5.4- 1 2) 

The gyroscopic couples are expressed in matrix form by the expression - -  .- 

where w(T) is the engine spin rate as a function of thrust amplitude setting-supplied to the 
FLEXSTAB system as a table- :tnd i V }  is the vclocity vector.partitioncd into syninietric mid 
antisymmetric puts,  Le., 
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The matrix [aG/aoj is expressed in terms o f  symietric and actisymmetric components, i.e., 

aG 
Ca,’ 

I 

(3.4- i 6 )  

and each partition of this matrix contains addition;. partitions, which ate r u t e d  to tht indi- 
vidual engines, e-g., 

[-] a G s s  E 
aw (5.4- 1 i j 

where [aGSS/au] pertains to the ith engine. Final!y, the partitions of equatioil (5.3-14]1 for 
the ith engine arc as follows for the two possible cases 0:’ engine rotation directions: 

parallel rotiaticn: 

F 1 



counter rotation: 

(5.4-19) 

P 

ahCy 
a p  [ -;.-I- .aGM :[ lhLZ -- ::;I 

-- - C=----I, . a w  a w  
[-I. = 

ow ao 1 
- .  

- ah Y 
a w  
- 

. In the c ~ r -  of counter roption the aircraft rotation rate Q1 leads only to  a couple Myg 
tending to prod. x motion inthe plane of symmetry. while the rotation rates PI and RI lead 
to qrroscopic couples which tend to produm motion which is out of the plane of syilimetw. 
Counter rotating engines therefore eliminate gyroscopic coupling in the motion of an aircmft. 
If an aircraft is undergoing symmetric motion. e-g. a pull-up with wings level, counter rotating 
engines produce no net coupk-eitner directly as an inertial- couple or indirectly through 
aemlasti,-ity a -  in_ equation f5.36)-which tends to rofl or yaw the airmift. 

T The components of force and couple generated by the propalsion system. { FB } of q u a -  
ti- . (~.4-2), are expressed in terms of the thrust amplitude setting TI by lettin2 tlie spin rite 
obeexpr-das - .. 

-.I \ 

w ( t )  =+m? 1 
(5 A-20) 

Introducing this expression into equstion (5.414) and thc rcsultirig expresslo!: into (5.3-7). i t  
fnl lows that 



Introducing equation (5.4-2 I )  leads to the d e s 4  result- 

(5.4-22) 

5.5 TRIM PROBLEM SOLUTION 

As noted in section 5.2, the trim problem consists of the six equations of motion 
expressed in terms of a specified steady. referentx flight condition and in terms of six unspeci- 
fied trim variables- The methods for solving for the unspecified trim variables are desL+bed in 
the fcllowing. 

55.1 Methods of Solution 

The FLEXSAB system utilizes two methods of solution for the trim problem-one is a 
d i m t  solution for a linear trim prbblem and the second is a Newton itemtion solution, ref- 
erence 5-1, section 7.3a for a nmlinear trim problem. in the caw of a linear trim problem the 
equations of motion are expressed in the following matrix form: 

(5.5- 1 ) 

where the elements of xk are the vxknotvn trim variables.' The problem is solved by multi- 
plying :.quation (5.5-1) with the inverse of the matrix { Fjk}. Le., 

(5.5-2, 

In the case of a nonlinear trim problem the equa:ions of motion are expressed in a h o m o  
geneous matrix form, viz., 

and expanded in a truncated Taylor wries about an assumed solution. 

*For tlic c';isc' ol' couplcd motion 
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The solution is found as 

where 

(5.5-5) 

( 5 . 5 4 )  

and { xk( 1)) is an initially assum4 solution. The sum appearins in equation (5.5-5) is ~-arriird 
. out until the ina-ement of each unknown trim variable becomes less than d specitied vilue. 

5.5.2 Linear Trim Problem 

The equations of motion for the linear trim proh"I..r are developed in xc!ion 5.2. They 
are given hy Equations :5.M 2) 2nd ( 5 . 3  3) wher &he propulsion system and aerodynamic 
termsare represented by the linear functions gv:n by equations (5.2-14) and (5.2-1 5) .  The 
rmeflicients appearins in eqrrations ( 5  2-14! a d  (5.2-15) are derived in sections 5.3 and 5.3. 

For the two cases of specified reference tli&t condition-Case { 1): specified tlight path 
angle. and Case (2)- spxifiai thrust amplitude-the matrices of the linear trim probkni. equi- 
tion (5.5-1 ) are xs follows: 

--r- - - - -  



5.5.2-2 Grre (2). Specified thrust amplitude setting TI-- 

[ -Mu~Q~+FA F G ~  
xEa 6e 

0 0 

0 C O  
I 

--FA- 

O ' M A  I xBe 
I A  

1 

' I FYBg 

MZBB 

0 0 

(r 0 

0 

- -  
A 

IA Y B d a  FY E 

MA ZBBa MZf 

1% 
A 

"XBga 

(5  -5-8) 
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- 
'FXBi -FA XBo -rpL XBQ Q1 

~ 

tions when two conditions are satisfied: (1 )  the reference fight condition is a symmetric 
motion 

5.5.2-3 Lorlgihrdid wmion-The trim problem is represented by a reduced set of equa- 

and (2) the gyroscopic couples from the propulsion sjstem are zero or are the result of 
counter,wtating engines, equdions (5.44 2) through (5.447). Assuming these conditions to 
be satisfied, the trim variables reduce to 

and the matrices I F1 and { H} reduce to thc following: 

Case ( I )  specitled flight path angle - 
A XSa -MU 1 C: 1 -Mgco sy 1 

T I  ZB&r 
FA F 

Z B 6 E  

(5.5- 10) 

( 5 5 '  . ? 
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L 

G s e  (2) specified thrust amplitude setting, T 

MA 
(5.5-12) 

5.5.3 Nonlinear Trim Problem 

The cquations of niotion for the nonlinear trim problem arc' developed in section 5.2.  
They arc givcn by c'quations (5.2-9) for case t I ). spcci1it.d flight path angle, and by equations 
(5.2-1 0 )  for cast. (2).  specil'icd thrust amplitude. The matrices for the solution tt) the problcni 
appearing in the iterative iormula. c'quation\ (5.5-5 and ( 5.5-(>I, :we de\~eloped for tlic two 
casc's 3s follows: 



The elements of the matris { aGj(i)/as,} are the eerivatives of the elements of the matrix 
{ G} with respect to the trim variables xk evaluated at the ith iteration, Le., 

The matriccs for the two c-ases available in the FLEXSTAB system for specifyin2 reference 
flight condition are as follows: 

L - 

CJSC (2)  specified thrust amplitude setting TI 

L - 

(5.5- 13) 



Case ( I )  specified flight path angle 

aG. 

Mgcos ( y 1 +ai ) x 

h ai" - 
aa 

YE xsf.,l$1-- 

-- 
a~ 

A c., ,. - 
0 .'. -? p, 

L d  

r. - ,,e. . 
3 .  .- 
I 

& E  --- 
3 B  

a 



Case (2) specified thrust amplitude setting TI 

- 
MU 1 1  Q sec2ai 

-a6 e 

8% 
-MU 1 1  T sec2ai 

-ab e 

A 
aM,B 

Mpcos6 i 

I<g:,in6. 

x s i n 4  
1 

1 

0 

i Ngs in6 

x s i n 4  
1 

0 

(S.5-! 6 )  



5.6 STATlC STABILITY DERIVATIVES 

The static stability derivatives describe the aerodynamic force and couple generated by 
static perturbations of an aircraft about the reference flight c_nditioti. reference 2-2, chapter 
2. This section contains a derivation of the static stability derivatives based on the linear 
aerodynamic and structural theories of sections 3 and 4. The derivation leads to niatris cqua- 
tions describing the static stability derivatives in terms of the aerodynamic matrices developed 
in section 3 and the structmal matrices developed in section 4. ‘The derivation proceeds from 
the steady form of the perturbatim espansion of the aerodynamic forces _riven by equation 
(3.5-63) and the steady form of the perturbation structuritl equations of niotion given by 
equation (4.2-78). This derivation is carried out  assuming that the steady (or static) perturba- 
tions are relative to the reference flight condition. 

5.6. I Classification of Static Stability Derivatives 

Following accepted practice. reference 2-2. the static stability dcrivatives arc separated 
iiito two groups-loti~tuciitial and 1ater~ldirt.ctioti~I-and art‘ espressed i n  terms ef the Body 
Asis System and in physic:;iI dinwnsions as follows: 

5 6. I .  I Lorrgiriidirtul static srubiliiy det-iwtivcs. - 

(5.6-1) 



5.6.2 Nondimensional Form o f  the Static Stability Derivatives 

Dimensioaal quantity in 
the Body Axis System 

A M A  M k  M Y 6  ZB 

(U-U,) v \Iv 

In the FLEXSTAB system the ststic stability derivatives are transformed to the Stability 
Axis System, equation (2.2-8), and are nondimensionalized using the system summarized in 
Table 5.6-1. 

Nondimensional 
Divisor quantity in the 

Stability Axis System - 
W i V  'D- 'L 

ij1 sw' CP 'm Cn 

U1 U P "  

* 

A 

P Q R  I 2U,/l 

I where S, and I are characteristic surface area and length I 
^ P 8 R  

The nondimensioiilrl static stability derivatives. expressed in  tho Stability Axis SyLic,ii. 
are found from quantities shown by equations (5.6-1) wd (5.6-2) as follows: 

5.6.2.1 Notidii~ioisionul loiigiriiditiul stutic stubilir~~ dcriiqarivcs. - 

5 - 5 0  



A A U 

1 
-L[(F,, - 4.,l 1 1 cosu 1 + !F ZB 1 1 siiiu 1 ]sec2al + cL - 

w 
CD = 

(5.6-3) 
q1 

Q 

t ?  



1 s i m  I ]sir:a I + 
1 P I  

1 cosa + (MZBR1,s~nal]cosci A 
1 

(5.64) 



..dhere 

- 
q1 = dycamic pressure of reference flight con-firion 

S, = wing referencc area 

c = referencechord 
- -  

- 
b = wingspan 

5.6.3 Statlc Perturbation Aeiodynamic Forces 

5.6.3. I Casic rcurioriy irwd iir the j'orrnulatiorr. - -The aerodynamic forces generated 
at the nerodyiiamic surface segrndnts for steady (or quasi-static) perturbatioiis about the ref- 
erence flight conditicit :re gi\<,I by zquatt;;: (3.5-66) with the pe,-turbatigi lifting pressure 
expressed for steady flow, viz., 

. .  and the perturbation structural equations of (notion ~sp!+cd fcr quasi-static p,r t  iir- 

bations, viz., 

. .  

> 1 0 . .  - 4 I I  The structural deformation { 6}p is t: msformed to dcxribe perturbstion camber dc' 
using equation (4.2-10 I ), Le., 



The appropriate fonn for tbr structural equatior., therefore, is 

w k  IC8 r j  I is t h ~  Y1exibill.y mttrix previously d=fined by equation 6 3 - 1  )- 

Comhning the sti;Ucturd quatior,. eqwtion (5.6-10). with the perturbation lifting pres- 
sure, esUarioa (5.651, and wth the perturbation leading e& correction. Le., 

-- 

lead~ to equations vJli .v be -nlbstitutd into equation (3.543) to express the static per- 
turbation aerodynamic Lx- ;n a form in which the deformation {e *} p does not appear 
. eAp;icitly. fhrt d t i n g  6nnirla way fie alved for the a ~ t t o ~  jnamic fonm { q} P by invert- 

ing the fdlowuq tnatrix: - 

In the FLEIWAB 3s;;cin the nunitlric-~_L~mput;r~i~ii~ misins from this operation arc grcatl! 
rduxd by neglcctinz t k  -%niribcltion to the Itxiding cdgs correction, equation (5.6- I I ). 
arising from thr slstic deformation { @*}p The matrix [*I 1 ~PWJIS multipll inp thc matrix 
['TTFI and this matrix product IS expr-d in ternis of ttie aeruchstic matrix. equation 
( 5 3 5 )  as 

- 

- 5 

- r D 1 r:,Tl IT,,] [DI (5.6-1 3) T 1 21 i i  t 

_5.6.3.2 FIHmuhuiwi of rhc varic perturburion I-. -&-namic forces. -Consider the - c:ipwion for the pturbation acdynamrc  forces. equation (3.563). expressed as: 

(5.6-14) 



Introducing the ctructural equation, quatiup (5.6-10). I Lo quation t 5.6-1 5 )  so as to chi- 
mtc ( P  )p and sobins for the forces { F-'}p. the nwltitis espnsion is substituted into 
equation (5.6-14) to obtain - 

Makine use of the following matrix identity: 

(5.6-1 7) 

atid substituting for the aerodynamic forces {e}; from equation 135-63). the static pertur- 
b a t h  aerodynamic fonxs are found as 

:-A 



llk analytical form for the static perturbation aerodynamic forces is used in the FLCXSIAB 
system as the basis for computing static stability derivatives 
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5.6.4 Static Sbbility Dzrivative Forinuhtion 

The furmulas which determine the static stability dericatives-fdlow from the perturba- 
tion expansion even by equation (5.6-19). In carryin$ a t  the derivation of these formulas an 
approximation is made regarding the aemelastic effect from the aerodynamic kding cwcrc- 
tion. This approximation is in addition to  t!mt which neglects the term shown as eqimtion 
(5.6-16). iL shown by the dewlopment in section 3-4- 13. tlir x d y l i a m i c  leading rdy cor- 
rection i ~ t r n v m s  aerodynamic forces in the direction of the free stream only-nearly in the 
Xdirection 01 the Refeeiicr Asis Systtni. The aerodynamic forces cmniputed from the Ieadiq 
edge correction are neglected in the umputatioir of elastic deformation. This ~ppmximation 
eliminates 3 large mnputarional task-that of compiling 

Since elastic deforination of practical aircraft confiepatiois arising from fonxs in the 
Xdireetion is wry small. neglect of the ttnns rcpmi i td  by equation (5 .620 )  should have 
a ndiojbly bi~rall & x t  on fk statii stabili+ derivatives by cwmptison with the liftirrg ;urd 
thickness induced amdynamic Circa- 

The rtatic stabilitv derivatives-both longitudinal and lateraldim-tiorral-are developed in 
the following for the s e  of a rigid aircraft. Aem-lastic incmments to the stability deribatives 
are then developed using the expansion of the aemelastic matris appearing in section 5.3.4.1 - 
The sum of the rigid aircraft static stability derivatives and the corresponding wmli~~tic incm- 
ments constitute the static stability derivatives of a flesib!e aircraft. 

56.4- I Rigid aircmjt bttgittlJititil sfubility deiiwi+c*s. -I R ivrmulating the longitudinal 
static stability derivatives. the ;rcrdyiiamiLx of the aircraft+ equation (5.6-19). are s u l n e d  to 
be thme for the symmetric L - . '  Jrxribtd i,. section 3.4.1 -5. The static stability derivatives for 
the aircraft as 3 ri93 body arc found by sctting to zero the flrsibi!;ly matries appearing in 
quation (5-6-1 9) 3rd by iniroducuig thc fol:owing notation: 



where \Do[ is given by equation (3.5-70) 

and 

(5.6-2 I ) 

The formulas for the rigid aircraft longitudinal static stability derivatives expanded on the 
Body-Axii System are as follows: 

where 1 Do[ is @-:en by equation (3.5-70) 

(5.6-24) 





+ 
(5.6-28) 

5.6.4.2 Rigid d m f t  lateml-duecrioiwl static stability deri;*atirrs. -In the formulation of 
the lated-directioml static stability, the aerodynamics of the aircraft, equatioit (5.6491, are 
assumed to be expressed for the antisymmetric case described by section 3.4.1.5. Using the 
notation defined by equations (5.6-2). but replacing thc tmnsfonnation to the Body Asis 
System. eiuation (5.6-21 1. with the tri .,omation 

1 0  
- 

(5.6-29) 

the formulas for the lateraldimctional static stability derivatives are found 3s follows: 

**? XBp 

I 

( 5  6-30) 



f 

( 5  -6-33 ) 
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which neglects the leading edge correction term in equation (5.6-19) given by equation 
(5.6-20). the formulas governing the aeroelastic increments are found to be given by *& fol- 
lowing equations with all matrices expressed for the symmetric case described by wctions 
3.4.1.5 a A  4.2.5: 

E 

E 

+ €+lint) 
0 

(5 -6-36) 

dCp 
+ M s. is0 

P I  I aM 1 

(5.6-38) 
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(5.6-39) 

E 1 '$I3 Q 

Follou iiig the srrnie approach 3s in section 5.6.4.3 immedi;t,ty above. the formulas governing 
the aeroc'l:atic ;ncrement. :o lhe IJtenldirwtionlil static stability derivatives are given by the 
following equations with all matrices espresed h i  tl:e antisymmetric case described by s e e  
tions 3.4. I .S and 4.1.5: 

E 

1 
I 

(5.64 1) 



i 
1 

1 

S aCp is0 
so + M {--I 

1 aM 1 + 

(5.643) 

( 5  -6-45) 

5.7 STATIC STABILITY AND TRIM CHARACTERISTICS 

The static stability and trim characteristics computed by the FLEXSTAB system consisi 
of tlic static stability clcriv;tivcs listt‘d !>y equations (5.6-3, mil (5.0-4), thc values of the lrim 
variables listed in section 5.2. I ,  tlic static \tability parameters (viz.. stick sped stability. cle- 
valor angle per g, n~*iit..~l point. st:itic ni:irein. and iili!nCuv~r margin), die sfcttic loads the 
static elastic deiormatiori. and the static ;icrdynairiic pi.-ssure distributions on litting surfaces. 
Espressions for thc static stability dcrivativcs and for [tic values ot  thc trim viiri 1ilc.s arc 
derit-ed in tlic preceding. This section is aimed at  thc; derivation o f  t!w rcmiti- 
i t  y and t ri ni iharact cris t ics. 

.; static stabil- 

e 
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5.7.1 Static Stability parameters 

The static stability parameters are camputed by FLEXSTAB nep' :ting the effects of the 
propulsion system and, except for the elevator angle per g para!netcr, L!w static stability para- 
meters are for a sieady. reference flight condition consisting r;: syiiimetric rectilitwar flight. 
The equatioris of motion are expressed as 

and 

c% CI SI L16P + C i Q o A  

= CL + c ;  a + c, 
L f  

(5.7-1 1 

(5.7-2) 

where 

and 

The pitch rat: Q1 is determined by specifying the load factor n for tw;, casec-stex!y uull-up 

an8 steady turn 

(5.73) 



Stding the pitch rate to zero and combining equations ( 5  7-1) and (5.7-2) yields the trim 
contro1 setting for rectilinear flight as 

c, c_ + c- 'CL1 -c Lo 1 
6 = La mo ma 

C el -- c c -c 
L6e m;e 

(5.7-5) 

Differentiating this expression with respect to speed. noting that 

n 

I 

the stick speed stability i. tound t.1 hc plven by 

a cm 
" c  + 

a cm -I acL 

0 
+ c L  - + c  3M - -  a 

(5.7-7) 

wticrc 



with [ defined as the distance aft from tiir leading edge of the reference chordline defined i d i i c  
FLE7.STXtl :ystetn. The coorJinate 5 extends to the poilit wherc the ;.itching motnent is 
aeasitred (Le., the location of the ccpter ~b'*mass). The quari1i:y h,, I .rates !he point - about 
Whicl~C,, ,~ vanishes. This  point i., icrnmcd the neutral point and is given . - 

(5.7-81 

5.7.1.3 Static murgirr.--~he static margin is obtaincd from equdtion (5.7-7) as 

(5.7-9) 

(5.7-10) 

where p 3 ,M/pSFis the relative mass. 

5.7.1.5 Elcvahw urigie pLrg (tiirir).-The expresslor' for elevator an& per g hi a turn:ng 
maneuver is mived from equatio :s (5.7-1 ), (5,7-2) n a  (5.5-4) as in section 9.8 3: refirexe 
2-2 and is given by 

dSe - 1 
CCL Lmx 

-- - - 
dn - 

C i  (5.7-1 I) 
1 

+. -1 (1+,2>(c,-c -2  CL > I  
'l  - 'L mQ Ii'if c 2 P  

5.7.1.6 ilh murrerooiizt - !he maneuvcr point i5 ,he cent 'rot mass location for which 
elevator angle per g vanishes for [lie pull-rip Inalieuver_ cquattcri (5.7-10). The valuc af elevatc - 
angle px: vanishes when 



Introducing equation (5.7-91, the maneuver point is found as 
c- 

liiQ ) hrn - hn -(*v-c 
- 

LQ 
(5.7-12) 

5-72 Elastic Deformation 

The FLEXSTAB system computes the elastic deformation arising from the refe..ence 
tlight 
by the fo- I . h g  operations invdving the flexibility relations developed in section 4 , u k  
?he deformed cainber shape is given by 

;n aerodynamic, i~ertial, and propulsion system loads. This deformatior, is given 

me matrix 

Transtational deformation of the camber shape is given by 

contains the initial c a m k r  shape, i.e-,( ec} in eguations (3.542. ( In1 

where (d*in) is an initial shape deformation which can be arbitrarily specified and 

The aerodynamic loads ( 
control surface settings (6e1, 6al, 6rl). 

] are found by combining equations ( (5.34) and (5.3-7) with 
equations(5.3-7)evalt.uk ’s” for the trim motionvariables(a1, f$,P1.Q1,Rl)and the trim 

5.7.2. I Jig shape computation-The jig shape is the geometry of an aircraft used in 
!aying out the fabncation jigs: and, because the structure is in a stress-free condition when it is 
supported in the fabrication jigs, the jig shape corresponds to zero applied loads. Aircraft 
which are very flexible have a design shape selected for a particular design point flight condi- 
tion. Letting the aerodynamic and propulsim system loads appearing in equations (5.7-13) 
and (5.7-14) be those of the design point flight condition, the deformation given by equations 
(5.7-13) aiid (5.7-14) then represents the difference between the design and jig shapes. 

The jig shape is computed by solving the trim problem for the design point flight condi- 
tion with the aircraft treated as a rigid body having the design shape. The resulting aerodynamic 
and propulsion system loads are then inscrted into equations (5.7-1 3) and 5.7-14). The camber 
{ B z u t  ),computed from equation (5.7-1 3bis subtractcd from the design shape camber 9 
and the displacements ( d * out } , computed from equation (5.7-14)pe subtracted from 
the design shape coordinates of the thin body mean surfaces and slender body mean ccnter- 
lines. These operations establish thc jig coordinates. 

{ cinl 
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5.7.2.2 Offkkslgn jwintflkht condition shapx-when the static stabicty characteristics 
of a flexible aircraft are evaluated for any flight condition, the camber shape {*& appearing 
in equation (5.3-7) must be the jig shape camber. The elastic deformation of the camk shape 
{B *} appearing in equation (5.3-7) is then the elastic deformation cOrteSpOndjng to the aero- 
dynamic and propulsion system I d s  of the selected reference fligat condition. Except for 
approximations to the inertial loads coffesponding to those d.kmsed in section 2.3.1.4 and 
appmximatjons in computing aerodynamic couples, the camber shape {Jrc) 1 :ads to the 
correct aerodynamic loading of the aircraft 

Approximations related to the inertial loads arise in the computation of the flexibility 
matrix transfixmation, Le., . 

[PI = [ I1  - 
and the .&id 5 d y  intxtia matrix, Le., 

[MI = 

(4.2-53) 

(4.2-25) 
- 

These approximations stem from having Jsed the rigid M y  r r d z  shape matrix [ g . ]  based 
on the geometry of the jig shape. A similar approximatim oczurs in the computation of the 
moment of the aerodynamic loads about the aircraft center of mass, Le., 

(4.2-57) 

The e m r  in the analysis introduced by this approximation tends to be small, however, 
because the elastic displacement tend. to be in the direction of the appliedJoads. Letting the 
displacement of the point at?relative :a thzcenter of mass be denoted as d, fylreJ2.3-3, and 
letting the applied force a t % e  dmo:ed as F, the couple about the center of mass M i s  given by 

1- 

k = (?+a, x P; 
but, because 

Thus, the moment of the applied I ~ U S  about the cente, of mass tends to be accurately pre- 
dicted when the computation is based crl the undeformed geometry of the jig shape. Increased 
accuracy can only be achieved by an iterative solution of the trim problem in which the rigid 
body mode shape matrix is updated at each iteration. 

5.7.3 Static Loads and Pressure Distribution 

5.7.3.1 Srotic louds. - The FLEXSTAB system computes static loads which may occur 
in either of two Lams. One form consists of the net loads at the { 6,) degrees of freedom, 
equation (4.3-180), at the elastic axis described in section 4.3.1. The second form consists 
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of the nodal components 6f foras (applied, net, and inertia loads) descn'btd in section 4.4.1. 

The distriiuted static airloads ( f$} arc given bv equation V A J .  These loads are 
+--- 

combined with the cn@e thrust forces to yield aFpkd structural loads 

usiagtherelation (5.7-1 5). 

Note that the contriiiution of gyroscopic couples is not induded m the load vector; 
however, its efftct has been mduded in the aemelastic solution. 

The matrix {@} describs the applied loads at the elastic axis nodes and junction 
points m terns of the {6=Ldegrees of freedom when the transformation [ l ]  is generated 
as in section 43.5, or {Q } describes the nodal farces at the structural nodes when [b] 
is generated as in section 4.4.3. The inertial loads are introduced by the transformation 
shown by either equation (4.2-53) or equation (43-208) leading to uet loads, section 
4.2.2.5, - 

and *e net i d s  are found as 

or 

The inertial loads are found from the difference 

(5.7-1 7)  

- 

As noted above, the net loads are in terms of { 6 es) degrees of freedom when the structm 
is defied as an elastic axis. When the structural properties are input to the FLEXSTAB 
system, section 4.4, the loads contain either olit, two, or three components of force at each 
structural node point of the structial representation, cf., section 4.4.5. The contribution of 
thrust is found as 
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(5.7-1 7a) 

Only the actual net loads (L1) and (Lr) are formed in FLEXSTAB when the elastic axis 
method is used. 

In addition b the loads computed by equation (5.7-15). the d o a d  shear, bending, 
and torsion can be computed at any selected point (X(A), Y(A), UA) ) in the Reference 
Axis System when the structural properties are input to the FLEXSTAB system as in 
section 4.4. These loads are given by the formulas 

?(A) = I &dS 

and S (A) (5 -7-1 8) 
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where S(A) is the aerodynamic surface of the aircraft participating in the computation. This is 
the aerodynamic surface contained in a rectangular parallelepiped volume of space defmed in 
the Reference Axis System by the FLEXSTAB user. TJe pos i t iq3A)  is the point, in the 

. -Reference Axis System, where the airlv.d resultants, F(A) and M(A), are measured and 7 is 
the point, in the Reference Axis System, where the pressure and surface normal am evaluated 
in the surface integration. The integration process, however, is simply a numerical sumrr.ation 
over the airloads( f$) acting at the aerodvnamic centroids of the aerodynamic segments 
contained in the rectangular parallelepiped volume. 

I 

5.7.3.2 Reference flight condition aetvdwtamic lifting presmrc dbtribiition. -The ref- 
erence flight condition aerodynamic lifting pressure distribution is computed from the aero- 
dynamic surface forces shown by equation (5.34) including the direct lifting pressure 
forces from thickness interference. The resuiting lifting pressul-f forces are denoted as 
( A 3 p )  and the Lifting pressure is computed by the formula 

where the aerodynamic forces coefficients are given by 

t i n t  wherein {Gp1 E cT,,l{C,) 
and [Tap1 is a matrix of surface area reciprocals, viz., 

I 
I 

1 
I 

- 

(5.7-1 9 )  

tS.7-20) 

(5.7-2 I ) 

where [I/Aw] contains the surface areas of the thin body mean surface panels and [I/ABj 
contains the reciprocals of the areas as slender body segments projected on XZ and XY planes 
of the Reference Axis System. The matrix of pressure coefficients, { ACp), thereforc, contains 
the Y and 2 components of average slender body segment lifting pressures and the thin body 
panel lifting pressures. 
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5.7.3.3 Airloads due to (I verticalgust durittg I -g  levdflight.-The objective of this 
section is to describe a method available in the FLEXSTAB system for determining the 
airioads resulting from a vertical gust neglecting the effects of gust penetration and neglecting 
the dynamic response of the aimaft to the gust airloads. The aircraft is initially trimmtd in 
a state of steady level flight and is then instantaneously and completely immersed in a 
uniform gust velocity flow in the Zdirection of the Reference Axis System. This flow results 
in a change in angle of attack &Y leading to gust airloads which are evaluated at the instant 
of time when the aircraft is immersed in the gust. Structural deformation is assumed to 
occur quasistatically and the only inertial loads contributing to the deformation are the 
result of the rigid body acceleration arising from the gust airloads. 

The incremental angle of attack is computed from the formula 

de Aa = K o e l F  
O EAS 

(5.7-2 2) -- 

where Kg is the gust alleviation factor given by 

88lJ =L 
Kg 5.3+l.I 

g 

the quantity pg being the airplane m a s  ratio 

wherein (F&& is the aerodynamic derivative given by equation (5.3-14); the quantity 
VEAS is the equivalent airspeed, viz., 

= u  
"EAS PO 

the quantities p~ and po being, respectively, the air densities at altitude and at sea level; the 
quantity Ude is the derived gust velocity in feet per second; and MF is a magnification 
factor. The values of Ude and MF may be arbitrarily selected provided hot is sufficiently 
smail for the linear aerodynamic theory of section 3 to be valid. 

The airloads are computed by equation (5.7-20) but incorporating the flow incidence 
due to the gust flow field, Le., 



5.8 IMPLEMENTATION OF EMPIRICAL AERODYNAMIC CORRECTION METHODS 

?o dvoid complicrting the development in preceding portiocs of section 5 ,  the effects of 
the empirical aerodynamic correction methods were not included. These effects are intro- 
duced in t!L section. aad they lead to modilkations to  the equations governing the aero- 
dynamic derivativLs of section 5.3 and the static stabilit) derivatives of section 5.6. The 
corrections are readily incorporated into the equations of sections 5.3 and 5.6 either by 
regarding c-rtain matricer to be modified by the empirical comtior .s  or by adjoining addi- 
tional terms. Also, in most cases the development of the modified equations exactly parallels 
tlie development of the Lwrrespondinp uncorrected equations appearing in the prezeding. In 
these cases the appropriate sections and equations of the preceding are cited and the details of 
the development are nor repeated in their entirety 

5.8. I Correction of the Steady Aerodynamic Influence Coefficients 

Vethods for making corrections to  the steady aerodynamic intluence coefficients were 
introduced by items ( I 1, (2 j, and t3) of section 3.4.14. These correction methods modify the 
values of the elements of the matrix denoted as [ LSC] and defined by equation (3.4-1701: 
they comct  (or chacge) the linear relationship 

(3 -4-1 69) 

The modified matrix is reduced, as described in sectior. 3.5.2, and formed into the steady 
aerodynamic matrices [“pel and [ X F ~  appearing in the precedipg portions of section 5. 
Tnroughout the preceding portions of section 5 and in this section the matrices [ LSC] 

. [ A d  ~ and [ A F ~  may be corrected or uncorrected with no distinction in notation- 

5.8.2 Aerodynamic Surfwe Area Corrections 

The aerodynamic surface area corrections were not introduced by section 3-4-14: they 
modify the values of the elements of the surface pressure transformation matrices [ T p ]  and 
[TRANS,] introduced by section 3.5. 

The purpose of the aerodynamic surface area corrections is to correct discrepincies .. 

between the surface areas of actual aircraft components ;ind the surface areas made up by the 
aerodynamic panel areas, Siy~i  and S B J ~ .  used in censtructing solutions to the aerodynamic 
protderc; in  section 3.4. The aerodynamic panels niust lie in  srrcaniwist. rows having 
streamwk edses. (See figures .1.4-1,3.4-b, and 3-47 . )  This requirement leads to thin body 
mean surface planforms which canno: always precisely match the mean surface planforms of 
the thin bodies being represented, rimre 5.8-1. thereby causing an area discrepancy. A second 
case of area discrepancy is illustraled by the wing-body-tail configuration shown by figire 
3.3-8. In  this case tlie surface areas of all three coniponcnts--wing. body, and tai1-m 
distorted by the requirentent that the meiln surfacc of the body must br a cylinder w i t h  gencr- 
ator parallel to-the X-axi: d the Reference Axis System. 

In either of the preceding examples, the distorted geonietry rcprescnted by the panels 
leads to an aerodynamic pressure prediction that is an adequate first-ordcr al;proriniati,w. The 
assumption that the predicted pressure acts on the panel iICCdS, however, can Icad to an  
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FIGURE 5.8-l.-PANELING OF A ROUNDED THIN BODY TIP 

inadequate approximation to the aerodynamic forces. An improvcd approximation can be 
obtained by computing the aerodynamic forces arising from acrion of the aerodynamic surface 
pressure on the actual surface xeas. This improved approxknation is acquired by the 
FLEXSTAB system by scaling the panel zreas, equatiolrs (3.4-1) and (3.4-2), so that their 
scaled areas sum tr, the actual surface areas of the thin and slender bodies. 

The pace1 areas S W I ~  and S ~ j j  are milltiplied by area factors (AF.$ before they are 
incorpomLed into the transformation matrices, [ T F ~ ]  and [TRANS, 1, which transform the 
aerodjnamic surface pressure into forces acting on the panels. A typical panel area correction 
is cilmed out as 

where S k ~ i  denotes the area of a panel to be corrected. The values of the area factors can be 
greater or less than unity, thereby allowing the scaled areas to be greater or less than the areas 
of the original panels. 

The area f-  ors can be given any numerical values required to make the panel areas 
match, in value, ,;le areas of regions of the actual surface. In general, howevcr, the area factors 
should hme numerical values that differ very little from the value unity; very large or very 
small values imply an inappropriate application of this correction method. 
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5.8.3 Corrtcticns to  Flow Incidence and Steady Lifting Pressure 

item (4) of section 3.’t.14 introduces corrections to  the flow-incidence and steady lifting 
pressure by adding four ternis to  equation (3.4-218). lading to  equation (3.4-241’ viz., 

where the added terms are underlimd. The flow incidence matrix{ ‘Y * lis supplied to  the 
FLEXSTAB system by supplying the column catrices appearing in the following flow inci- 
dence expression: 

( 5  -8-3) 

where - - 

Equation (5.8-2), combined with equation (5.8-3), i5 used to  play the role of equation 
(3.4-2 18) in the derivation of the expression for the reference flight condition aerodynamic 
forces, equation (3.5-58). The development then parallels that of sections 5.3.3 and 5.3.4, 
resulting in corrections to the aerodynamic derivatives. Corrections to the static stability dcriv- 
atives are found by using equation (5.8-2) in lieu of equation (3.4-2 IS) in the derivation of 
equation (5.6-1 9), Le., the expression governing the aerodynamic forces generated by static 
perturbations about the reference flight condition. This devulopment parallels that of sec- 
tion 5.6.4. 

5.S. 3.1 Corrected reference flight condi(iriotr uerocl+vnutnic forces. -The cni pirically 
corrected rcferencr flight condition aerodyneimic forces for a rigid aircraft are derived. as 
noted earlier, by repl;icinp cquation (3.4-2 18) with equation (5.8-2) in  the derivation leading 
to equation (5.3-22). This derivation ieads to the following result: 
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( 5  -8-4) 

where 

The empirically corrected reference flight condition aerodynamic forces for a flexible aircraft 
are obtained by expressing equation (5.3-7) using equation (5.8-2) and by carrying out the 
development leading to equiition (5.3-1 I). The expansion of the aeroelastic matrix, section 
5.3.4.1, is then introduced to find the corrected expression fGr the aeroelastic increment to 
the reference flight condition aerodynamic forces. The result is as follows: 

where 

and 

(5.8-5) 

The equations governing the empirically corrected aerodynamic derivatives and their aero- 
elastic increments are deduced directly from equations (5.8-4) arid (5.8-5). Tlir desired results 
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areoftwo types: ( I )  thecoefficieiitsofthc.qiiantitiesal. ~ ~ ~ . P I . Q I .  Rl . t ,Cl ,&,I .andbrl ,  
and ( 2 )  ttic values of equations (5.8-4) and (5.8-5) wiicn these quantities itre : I 1  set to zero. 

5. S. 3.2 C'orrtwcd brrgirirditrul ucvwij-tiuttiic derivutiiw fix u rigtd uircrujt. -Let tip- 
the matrices in equation (5.841 be expressed for the synimctric aircraft case (see sec; 2 

3.4.1 .S and 4-23), the longitudinal aerodynamic derivatives are foLirid to be as fol lo~ .._ 

= C G T l ( { f T }  A is0 + {fAlint) + ~ l C G ~ R l { Y c l  + 

(5 .8 -6)  1 T 1  

+ il(CG,,l{Y:} + CGFICTFpl{ACp 1) 
0 

( 5  3-7) 

(5.8-5) 
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A r 
xB&e 

FA 
ZB6e 

A 

e - . 

5.8.3.3 Corrected laterul-directional aerodynamic derivatives for a rigid aircraft: Letting 
all of the matrices in equation (5.84) be expressed for the antisymmetric aircraft case (see 
sections 3.4. I .S and 4.2.5), the lateraldirectional aerodynamic derivatives are found to be as 
follows: 

- -  
FA YBF 

A 
MXBp 

A 
MZ Bp 

- -  R 
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(5.S- 14) 

5.8.3.4 Corrected aeroelustic i ~ c  vnents tv  t lw  loiigiridiiid ~ i ~ ~ ~ ( ~ c I ~ . t i ~ i i i i i ~ ~  deriinri~~ss. - -  

Letting all of the matrices in eqiiation (5.8-5) be expressed for the spniiiictric a,rcraft ~ ' ; i s ~  
(see sections 3.4,1.5 and 4.2.5). the aeroelastic iticrements lo the longitudinal aerodyii;iniic 
derivatives are found to be ;IS follows: 
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(5-8- 1 5 )  
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5s- 3.5 Corrected aeroelartic irtcrenteitts to the lateml-directioiml aemdjvtantic 
derimtii*es.-Letting all of the matrices in equation (5.8-5) be expressed for &he antisymnietric 
aircraft case (see sections 3.4.1 -5 and 4.2.5). the aeroelastic increments to the hterd- 
directional aerodynamic derivatives are found to be as follows: 

4 B  B 

(53-20) 

(5.8-2 I ) 

.- 
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5.8.3.6 Cbrrected static pertwimtfoti aemdynami&- fwce- -The corrected aerodynamic 
forces resulting from static perturbations about the reference flig.ht condition are found by 
inlroducing the underlined terms appearing in equation (5.8-2) into the development leading 
to equation (5.6-19), neglecting the terms identified by qriation (5.620). Thk dcvelopment 
Ieads to modified matrix expressions for the leading edge thrust correction, section 3-4-12, 
and to thz following terms which must be added to equation (5.6-20): 

( 5  -8-24) 
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(5.8-28) 

+-.CdC la + tac 36 
pa pB 

The modified leading edge thrust correction terms are given by the following equations using 
the two matrices defined by equations (5.8-27) and (5.8-28): 

(5.8-30) 
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and 

+ {ADR)r 

where 

(5.8-31) 

(5.8-32) 

and the remaining column matrices in the left-hand member o f  equation (5.8-31 ) are similarly 
defmed, cf., equation (3.5-72). 

5.8.3- 7 Corrected lotigitudinal static stability derivalim far a rigid aircraft. -Setting the 
stmctural flexibility to zero and assuming that all o f  the matrices in equation (5.8-24) are 
expressed for the symmetric aircraft case (sce section 3-4-13, the empirically corrected forms 
.of the equations in section 5.6.4.1 are found to be as follows: 

where 
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- S aCP is0 
I - a M  1 u 1  

+ M {-} L)+ 
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and 
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5.8.3.8 Corrected lateml-dire. tiorlal static stability derivatives for a rigid &craft.-Setting 
the structural flexibility to zero and assuming that all of Ox matrices in equation (5.8-24) are 
expressed for the antisymmetric aircraft case (see secticn 3.4.129, the empirically corrected 
forms of the equations in section 5.6.4-1 are found to be as follows: 

R 

(5.8-39) 
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(5.842) 

L JR 

R 

(5.8-43) 

5.8.3.9 Corrected acroehtic incremem to the longitudinal static stability derivatives. - 
The corrections to the aeroelastic increments are obtained by applying the expansion of the 
aeroelastic matrix, section 5.3.4, to the perturbation aerodynamic forces given by equation 
(5.8-24). All matrices are assumed to be expressed for the symmetric aircraft case (see sections 
3.4.1.5 and 4.2.5), and the development, paralleling that of section 5.6, leads to the einpiri- 
caily corrected forms of the equations in section 5.6.4.3. The results are as follows: 
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E 

(5.8-45) 

E 

+ I A C ~  la + C A C  I B ) ]  
pB l 

1 a .  
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5.8.3. IO Corrected aeroelastic increments to the lateralduectional static stability 
&rivatiues.-Following the development of section 5.8.3.9 but assuming all matrices to be 
expressed for the antisymmetric aircraft case (see sections 3.4.1.5 and 4.2.5) leads to the 
following: 

- -  
hFA 

YBP 

A 
AMXBp 

A 
a M ~ ~ p  

I - 

E 

E 
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-. S is0 + 

1 
= i 1 [Go 1 [C,,] [TRANSt] (2 tc,) 

(5.8-5 2) 

1 ac: isO 
+ M I-) )& + < 1 CG BE l { Y R l ~  + 

1 1 aM 1 

E 
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6.0 UNSTEADY PERTURBATION FLIGHT CONDITION 

6.1 INTRODUCTION 

The equations of mot!.In for unsteady perturbation flight conditions are examined by the 
FLEXSTAB system to 2 duate the dynamic chardcteristics of an aircraft. The characteristics 
evaluated are the t p m i c  stability (i.e., the characteristic modes cf  motion, their frequencies, 
and damping', dy..amic stability derivatives and control cffectivenesses, dynamic structural 
load coefqcients for shear. bending and torsion at an elastic axis, itnd cnsteady lifting pressure 
distrJ=ations. The bases for the dynamic stability evaluation are two methods .or integrating 
the unsteadv perturbation equxtions of motion: one is an eigenvaL probl.:D I sobtion method 
and the other is a numerical integration method. The remainirg gynami acteriztics arc 
evaluated by formulas derivLd from quantities appearing in the equatic lotion. 

tor and matrix form. In section 6.2, these eqt-ations are converted so tha , .ire entircly ir. 
matrix form-the form appropriate to  the FLEXSTAB system an:ilysis. In this =:tion the 
applied forces (Le., the forces arising from the propLlsion system and aerodynamics) are par- 
tially developed. The dependence of gyroscopic couples on the perturbation motion is 
developed to its final form, but'the dependence of the aerodynainics-a more invo1ve.i 
development-is treated h a separate section, VIZ section 6.3. 

The unsteady perturbation equations af motion we derived, in s e ~  'ti a rilixed vec- 

The unsteady perturbation aerodynamic forces are developed from basic aerodynamic 
and structural relations derived previously in sections 3 and 4. The development leads to 
aerodynamic force coefficient matrices listed in section 6.3.2. These matrices are incorporated 
into the FLEXSTAB system in two ways: One, they are transformed to produce formulas for 
the dynamic stabi!ity derivatives-an end product of the FLEXSTAB system dynamic evalu- 
ation. Two, they are used to formulate combined aerodynamic matrices-quantities appearing 
in the equations of motion. In section 6.3.4, variant forms of the aerodynamic force coeffi- 
cient matrices are used to express dynamic structural load coefficients and unsteady pressure 
distributions. 

The dynamic stability evaluation method based on the solution of an eigenvalue 
problcm-a linear dynamic analysis-is developed in section 6.4. The linear, unsteady pertur- 
bation eqiiations of motion, including the effects of unsteady aerodynmics, are expressed as ii 
system of first-order differential equations with constant coefficients. This system of equa- 
tions, having constant coefficients because of the low frequency axodynamic approximation 
of section 3.2.6. poses the eigenvalue problem, section 6.4.1. The solution-:.ia.i.rvalues and 
eigenvectors-forms the basis for expressing an irltegral for the equations cf niotion: hence. the 
eigenvalues and eigenvectors coniain the information required to compute a first-order 
approximation of the dynarrlic stability characteristic of an aircraft. The 5-jrmulas for these 
computations appear in sectirn 6.4.2. 

The dynamic stability evaluation method based a i  nunicrical integi:ltion is clcvcloped in 
section 6.5. I n  this cvaluation the equations of niotion may bc nonlincar and the nonlinear 
functionality may appear in either of two sets of terms: Onc set is the rigid-body iiicrtial terms 
and the other sct is thc aerodyiiainic forcc tcrms. Nunlinear acrodynamics are introduced . ; 
tabular data in a form similar lo that used in t lx  nonlincar trim problcrii ol'scction 5. 



The perturbation motion may be initiated either by specifying initial values for the 
perturbation motion variables, or t y  subjecticg the aircraft to a discrete gust, or by a 
combinaticn of these two methods. 

Excitabon of the perturbation motion by penetration of a discrete gust flow field is 
-described in section 0.5.3. The gust flow field has a onedimensional spatial Variation-in a 
direction arbitrariiy oriented relative t -a the direction of ail :raft motion-and the spatial varia- 
tion may be thzt of either a sine wave, a one-minus-cosine wave, or a modified squair: wave. 
Although the spatial variation may be assigned any wave leng?h, care must be exercised in 
choosing t!x wave length relative to  the velocity of the aiicraft. The reduced frequency of the 
gust flow incidence dt the aircraft surface must be small by compaiison with unity or the 
unsteady aeradynamic forces will not be accurately nredicted. section 3.2.8. The unsteady 
aerfldynamic forces computed by the FLEXSTAB system are linear functions of the fre- 
duency of the unsteady flow. A very high freq. 'ency gust flow incidence will result in very 
large. erroneous unsteady aerodynamic forces. 

6.2 UNSTEADY PERTURBATION EQUATIONS OF MOTION 

In the preceding, viz., section 4.2, the unsteady perturbation equations of motion are 
derived as the following system of equations: Two vector equations governing the dynamics of 
perturbation rigid body motion, Le., 

and two matrix equations governing the dynamics of perturbation structural mc;tic;ns, i.e., 

(4.2-84) 

where 

These equations of motion govern the dynamic characteristics of a flexible airci3ft when 
perturbed from the reference flight widition described in section 5 ;  they are expanded in this 



section and at dewelopd into equations entirely in terms of matrices-the form required foi 
the FLEXSTAB system method of dynamic analysis, 

- 

6.2.1 Ap ied  Forces 

- The right-hand members of the equations of in?>tian appearing in section 6.2, above, 
contain the perturbation d y n a m i c  and propuk.cn system forces. These perturbation 
forces are the consequena of pertubations to the appbecI surface tractions (i.e., { P"} in 
equation (4.2-8) and 3 in equation (4.240)), and they are expanded in terms of the contrib- 
uting effects of the 3erodynamirs and propulsion system as follows: 

f cp -- - it;A cp + P:p' (6.2-1) . 

(6.2-2) 

(6.2-3) 

' A r l e  superscripts (A, T, and G) denote the physical origin of the terms in the expansion, viz., . 

a A-surface tractions arising from aerodynamics 

0 T-surface tractions arising from thrust of the propulsion system 

-0 & d a c e  tractions arising from gyroscopic stiffness of the propulsion system 

This notztion is consis:cnt with that used in describing the aerodynamic forces in sections 
3.5.1 and 4.2.7 and in describing the propulsion system forces in section 4.2.8. The perturba- 
tion forces applied at the structural nodes { Qs }p are simply the - .:m of the applied aero- 
dynamic loads given by equation (4.2-1 16) and the applied propulsion system loads given by 
equation (4.2-1 19). 

6.2.1. I Perturbation aerodynamic forces. -Further expansion of the applied aerodynamic 
forces follows from the contents of section 3.5 and leads to matrix cxpressions of the fol- 
lowitlgfom: - 

(6.2-4) 
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and 

(6.2-5) 

wh-ere {o:lp 1 T A  {Q I T  
1 

is the matrix of generalized aerodynamic forces conjugate with the free viirathn modal ampli- 
tudes ( ~ 1 ) -  

me matrix ( 6 ) p  contains the components of P&, ~ r d  a& ex- 61 e ~ o d y   xis 
System, section 2.2.2, while the mabix {u~}p contains the modal degrees of f d o m  of the 
structure appearing in equation (4244S listed in section 6.2. The matrix { V}p contains pcr- 
tUrbati011~ to the Md body docities Vcp and Gp in the f a -  mix m y :  

Where 
A A A * -  up .. ui, + vj, + ~ 1 . ~  

and (6.2-7) 

The derivation of the matrices [Ail and [ail appears in the follorving in s t i o n  6.3.3. 

6.2 1.2 Perturbation tlrnrst forces. -me terms of equations (6.2-1 ). (6.2-2). and (62-3). 
arising from perturbations to the thrust of the propulsion system, follow directly from the 
contents of section 4.2.8 and from the expression for the rigid body mode shape matnu- 
equation (4.2-21). The pcrturbation loads at the structural nodes are found from equation 
(4.2-1 19) as 

c? 
{QAIP = C?IP.Fl{T)p (6.24) 
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f FE) 
P 

(6.2-9) - 

- (6.2- IO) 

(6.2-1 1) 

(6.2-12) 

6.2.1.3 Perturhtion gymmpic forces. -The propulsion system gytoscopic terms 
appearing in equations (6.2-2) and (6.2-3) are the result of perturbations to the angular 
momentum of rotating engine parts. These! rotating parts are denoted by the term "rotor" in 
the following. 

3 75 
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Assuming that the center of mass of a rotor is on the axis of rotor spin, fekre 6.2-1. and 
asuming that the rotor is a rigid body, the angular momentum of the ith rotor ahnut its 
center of mars, when the airaan is perhrrbed from the reference flight condition, is given by 

+ *e hi = J Fe x C G  + + up + eip O G  + G?) x r..]pAdV- +e 
1 i 1 

Ve i 

In this expression, Tis the rotor v 1 
body rotation rates of the aircraft 6 

e, Gl and % are the reference and perturbation rigid 
IS the elastic rotation rate, and 3 is the rate of rotor %!? 

rpin, Gyroscopic stiffaess of the i ihip rotor is identified with the angular momentum due to 

spin, *. 

c 
Romr 

-< - Rotor center of grmitv 
L 

e: 
FIGURE 6.2-1.-PROPULSION SYSTEM ROTOR 

The gyroscopic couple of the rotor about the en -ne center of mass-the reaction to the 
couple causing a change in the angular momentum +f hi -is expressed as 

where 6/6t is the time rate of change apparent to 2 observer in an axis system fixed to the 
axis of spin. The angular momentum of the rotor, h:, appears time invariant to this observer; 
hence, the perturbation gyroscopic couple is given by 

(6.2-1 5 )  
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The tohl gyroscopic couple from n rotorsisexprcssedbythesum 

4 " 4  Mp 3 1 
i= 1 (6.2-16) 

6.21.4d4afrh fonnuhtro - R of pa.wbation gyratcopic coupfa-The vector expression 
apparhg above as expath  (62-1 5) must be expressed in matrix form consistent with the 
structural node point forces, ;OG)p appearicg in equation (6.2-3). 'A7& expression is obtainma 
fiom the propalsion system transfarmat'o~ *-xafions developed cection 4.2.8, i.e., 

and . -  

(4.2-1 19) 

(4.2-1 18) 

These equations are in terms of the components of the vectors 
. Refaence Axis System and written in matrix form as follows: 

and? expanded on the 

&d 

{eG) = 

- 

G { M i l  

:. 

G € O i l  

* .  

_where {Mi) G E 

eG 
'i 

(6.2-1 7) 

(6.2-18) 

The matrix equivalent of the vector expression for a perturbatior, proscopic couple, 

G *G { M i l p  = -[GiI{V), - C G i J { O ; j p  .- 
equation (6.2-1 5). is expressed as 

(6.2-1 9) 
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G 
r, 

0 0 ' 0  -h G 'i h{] i or  CGi l  E C&h(T) 
aG. 

I! OhY 
I 

(6.2-20) 
I 

0 0 -hE I 0 $ 0 
i I  i 

wherein [aGi/aw] is the matrix defiiied in section 5.4.2, and 

C G . 1  E 
1 

-h: 

G i  
hXi 

0 
(6.2-2 I ) 

A combined equation containing the gyroscopic couples of all engines is based on the matrices 
(MG), equation (6.2-17), and {eci ,  equation (6.2-18), and is given by 

G €M IP = -cGlIVI, - CElf8G) 

where 

L 

(6.2-22) 

(6.2-23) 

and has partitions as defined in section 5.42 wl:.;c 

(6.2-24) 

Finally, the structural node point forces arising from gyroscopic couples, {QG)p, are found 
from equations (4.2-1 19) and (6.2-22) as follows*: 

(6.2-25) 



- The perhrrbotion effects of the gyroscopic c0u.k~ acting on the a i m d f t  as a rigid body are 
found Usinn the rigid body mode shape matrix, equation (4.2-49). The result* 
is as fdlorvs: 

- {FE} = -2C/63T[AGl ([GJEV), + c631;llp) (6.2-26) 

(6.2-27) The h t  term of this resuIt is also expressed as 
- 

0 0 
0 0 

0 0 

0 . o  
0 0 

------ 
... i 0 0 

O I  
O I  
0 1  

0 0 
0 0 

0 :  0 

0 

U 

[j-j 
where the elements hG- hG and hG are the components of the angular momentum of all rotat- - 

X Y  2 
k g  engine parts. The second term of equation (6.2-26) is expressed in terms of stnictural node - _ _  
point displacement m i e ~  by introducing equation (4.2-1 18). The result is 

I$61TCAGICEI{B"I, = CT3TCAGI IE1{AG}Tf61p; 
and, i? terms of the residual flexibility decomposition of the elastic deformation, equation 
(4.2-85), this expr&on becomes 

where 

6.2.2 Matrix Fonnulatioz of the Perturbation Equations of Motion 

In formulating the perturbation equations of motion in terms of matrices, the equations 
are maintained as two separate sets-rigid body equations of motion and structural equations 
of motion. The rigid body equations of motion crjiitain the nonlinearities shown by the vector 
formulation, equations (4.2-66) and (4.247), while the structural equations of mation are 
linear by virtue of the approximations introduced by section 4. In the following a nonlinear 
matrix formulation is dedued from equations (4 .246)  and (4.2-671 and then reduced to a 
system of linear equations. The reduction is accomplished, simply, by deleting products of 
perturbation variables in the noncnear rigid body equations of motion. 

*Separation into symmetric and antisymmetric s;stems of forces, section 4.2.5, follows from 
use of symmetric and antisyrmietric forms for the matrix [A c I .  
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6.2-2. I Nonlinear rigid body perhubation eqtatiortr of morion.-’lhe rigid body qua- 
- tions of motion are obtained in matrix form by writing a matrix equivalent to equations 

(4.2-66) and (4.2-67). In writing this equation the gyroscopic forces, developed in matrix form 
in the preceding section, are treated as terms separate from the thrust force terms The ma- 
trices, developed in the preceding and used in writing the rigid b d y  equations of motion, are: 
the total m&nertia matrix, [MI, equation (4.2-26); the per t -ht ion velocity matrix, { V}p, 
equation (6.2-6); and the matrices of applied forces expand-d on the Body Axis Sy-rem, 
{ F;)p + (F&, equation (6.2-1 1 ). The matrix equivaler.c of equations (4.2-66) and (4.2-67) 
-the nonlinear, rigid-body, perturbation equations of .aotioR-are as follows: 

L M 3 { t j p  + LMM I ]{VI, CMM2I{rolp = 

= - IER3(G11P + { G I p  + {F:Ip 
(6.2-29) 

where 

The matrices [MMl], [MM-,] - , and [E,] appearing in this equation are given by: 

CMMJ = 

where 
G A = (2P +p)IXZ+R (I -I 1 + hZ 

1 1 xx zz 
G B = -(2R +r)IXZ+(P +p)(I -I 1 - hX 

C = -P I 
1 1 xx zz 

G +(R +r)(Izz-Iyy) - hZ 
1 xz 1 

D = - ( Q  +q)Ixz 
G E =  Q ( I  -I 1 - h y  

1 22 YY 

1 

F = ( R  +r)IXz+?l(Iyy xx G -I 1 + hX 
1 

G ( Q  +?)(Iyy-Ixx) + hy ti = 

H = Q,Ixz 
1 

(6.2-30) 

(6.2-31) 
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(6.2-32) 

(6.2-33) 

The matrix [MM I ] introduces rigid bojy inertia and incorporates the elements of the 
gyroscopic couple matrix appearing in equation (6.2-27). The matrix [MM2] introduces a 
linear, first-order approximation to the rigid body gravity perturbation forces m g  from 
perturbations to the orientation of an aircraft in the gravity field. The matrix [C,] introduces 
the perturbation gyrosmpic couples due to rates of ekistic deformation. 

6.2.2.2 Linear perturbation rigid body equations of motion -In this section the perturba- 
tion rigid body equations of motion, equation (6.2-29), are reduced to equations which are 
linear in the perturbation motion variables. Linearization is accomplished by assuming that the 
perturbation motion vviables are so small that terms of second and higher order in these vari- 
ables are negligibly small by comparison with the first-order terms 

The linearized equations are identical in form to equation (6.2-29), but the matrix 
[MM 1 1 is redefined by deleting all elements containing perturbation motion variables. It fol- 
lows ihat 

[MMiI E 

3 

0 
c I  0 

F I  
G 

+;i (Ixx-Izz) + hZ 
G B -2R I. +P (Ixx-Izz) -hX 

- G  

where 
A E 2P I 

1 xz 1 

1 xz 1 

C E - T I  1 XZ+RpZZ-Iyy) - *lz 
D r - Q I  

1 xz 
E Z Ql(Izz-Iyy)- hy G 

G F Z  3 1  + P ( I  -I ) + h X  
1 xz 1 YY xx 

G H 
- 

(6.2-34) 

H Z  Q I  
1 xz 
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6.2.2.3 Perturbation structutul equations of motion.-The structural equations of rncl 
tion, i.e., equations (4.2-84) and (4.245) listed in section 6.2, are expanded to obt in  

- + CGsI{;1Ip +, ,?i<l~{ui} ,  + CGll{V), - 

and 

where [E] is the gyroxopic cb-iple matrix defined by equation (6.2-24) and [GI is the gym 
scopic couple matrix defmed by eqtation (6.2-23). 

These equations, in combination with the Ii2d body equations of motion, represcnt the 
perturbation equations of motion for a flexible airm?. Their integral with respect to time in 
the following, viz., in section 6.5, is used to assess the dynLric shbility characteristics of an 
airmft-section 6.5. It remains, however, to expar,d the aerody,:arnic forces appearing in 
these equations in the matrix form given by equations (6.24) znd (6.2-5). 

6.3 UNSTEADY PERTURBATION AERODYNAMIC FORCES 

The central obiective in this section is to derive formulas determining thc elements of the 
aerodynamic matrices [A?] and [a:] introduced by equations (6.2-4) and (6.2-5). The deriva- 
tion closely follows that of the static stability derivatives in section 5.6; in fact, some of the 
formulas derived in this section are identical in form to the static stability derivative formulas 
appearing in section 5.6.4. 

6.3.1 Basic Aerodymmic aQd Structural Relations 

The aerodyrcwk Ielation which is bsric to the derivation is equation (3.5-63). This equa- 
tion describes the aerodyn;*mic foxes generated at aerodynamic surface segments by unsteady 
perturbation motion of ;an a icraf t  about a steady. reference flight condition. The unstcady 
perturbation mation is, in part, duc to elastic deformation governed by the structural equa- 
tions of motion. The appropriate form of the structural equations of motion must thcrefore 
be combined with the perturbation aerodynamic equation-equation (3.5-63). 



6.3.1. I Basic structural refufiun.-The perturbation elastic deformation is given in section 
4.2.4.2 as 

(4.2-85) 

where [ c ~ ]  is the residual flexibility matrix. Expanding the applied nodal forces as 

{QS}, = {QAIp + {QTI, + {QGIp (6.3-1) 

(where the superscripts fefnr to forces arising from the aerodynamics, the thrust, and engine 
gyroscopic couples), the transformations given by equations (4.2-101) and (p.2-116) are in- 
duced to obtain 

where 

and 

(5.3-2) 

This structural relation is basic to the derivation to follow. 

6.3.1.2 Cotnbina!ion of thc aerodynamic and stnictriral relations. -The elastic deforma 
tion {B*}p can be eliminated from the aerodynamic relation, equation (3.5-63), by a direct 
substitution of the structural relation given b equation (6.3-2). The resulting expression must 
then be solved for the aerodynamic forces { 4 ) ~  . This solution requires the inverse of a large, 
full, nonsymmetric matrix. 

Tne computational task involved in solving for the aerodynamic forces is cmsiderably 
reduced by expressing the perturbation aerodynamic forces in the following sum: 

(6.3-3) 

where the perturbation aerody.:amic forces appearing on the right are given by 

-{e *}p being the camber shape deformation arising from the applicd pcrturbation forces 
shown by equation (6.3-1 )---while: (f#]b contains all reniaining terms appcaring in equation 
(3.5-63), vis., 
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where equation (3.5-66) has been used. 

Combining equations (6.3-2) and (6.3-3) leads to the following result when MC is made 
of the definition given by equation (6.34). The result is as follows: 

Solving for the aerodynamic forces {FA;; and substituting the result into equation (6.3-3) 
yields the pr1urh;ltion acrodynainic forces expressed as 



where 

6.3. I .3 Approximatiotr to tlic leading edge correction. -Equation (6.3-7) expresses the 
perturbation aerodynarr, ic forces without the explicit appearance of the elastic deformation 
arising from quasistatic, residual flexibility deformation except in the leading edge correction 
term. The leading edge correction term in equation (6.3-5) given by 

is neglected in the FLEXSTAB system analysis. Neglect of t h s  term leaves out a portion of 
the leading edge o,.;ection. That which is left out arises from the residual elastic deformation 
produced by the perturbation aerodynamic forces, in turn, arising from residual elastic 
deformatiop-those aerodynamic f o r m  given by equation (6.34) when {e*}, is due to  the 
residual flcxibility only. This approximation - introduces a small error into the leading edge 
correction but allows the matrix[D~]to be expressed in terms of forces ncrmal to the meail 
camber sxfaces of the thin bodies of a cmfiguration in lieu of two components of force-one 
in the XN-direction and one in the ZNdirection of the local axis systems of the thin bodies. 

Substituting the perturbation aerodynamic foces given by equation (6.3-5) into equation 
(6.3-7) and mzking me of the matrix identity 

and ignoring the leading edge correction term given by equation (6.3-8), the perturbation aero- 
dynamic forces are found as 
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This expression,.describIrig the perturbation aerodynamic forces generated by rlnsteady pertur- 
bations about the s t u d y  reference flight condition of sectioi 5 .  i; fund;imental to all of th? 
development to follow in this section. 

6.3.2 Aerodyr.Amic Force Coefficient V.l:itriccs 

1 his sectioi contailis a derivation of the torce r e d t a n t s  computed tinni the distrihuted 
aerodynamic forces described by equation (6.3-1 0). These forcc ressltants are generalized 
forces conjugate to the rigid body and frw vibration mode shapc amplitudes. i.:., the total 
aerodynamic fGiCC and couple at thc center of mu5 and thc aerodynamic forces which cause 
work to be donc on the frer. vibration modes o f  thc structure. The aerodynamic force result- 
ants are linearly related to the perturb3t:on motion variabics by equation (6.3-1 0); thus, ihey 
can be expresbed in terms of coefficients multiplying these variables. T h w  acrodyn.imic force 
coefficients are derived in thc following. 

The aerodyr,amic force resultants arc computed from the distributed aercd:. .:amic fc ices 
of equation (6.34 0) using the following transforrw!tions: 

0- 1 h 



and 

(6.3- I 2) 

where the matrix [%I, which transforms the distributed forces { ff}p to  a force and couple at 
the aitcraft center of mass, is as previously defia cJ by eqwtion (5.3-131, viz., 

(53-13) 

and the matrix(HT1, the transformation to generalized fomxs conjugate to the free vibration 
modes of the stru&te, is defined as T [€r$ 5 2c$T13 

c$Tll = CP,IC@, 3 
and 

1 
(6.3-13) 

The qmtibes appearing in th- transformation matrices are as follows: the structwal trans- 
formaticn m;trix[PT) defined by equation (4.2-1 16). the ri@d hody and f m  vibration mode 
dupe matrices[#*] and[#61], the factor 2 ac,ounting for the fact that the male  &pes are 
expressed for on:y one side of the aircnft. the tramformation from local =IS system to Refer- 
en.e Axis System[Tml derined by equation (3.5-30), and the transformation from Reference 
W System to 8 d y  Asis System Id1 defined by equation (3.5-71). 

The operations shown !iy equations (6.34 I ) and (6.3-1 2) are applied to equation 
(6.3-10). These operations yield a set of column matrices multiplying the perturbation motion 
variabl ;. These column matrices-the aerodynamic forc-e coefficient matrices-are espanded 
into rig~d plus aeroelastic ;acrement?coefficient matrices following the approach of section 
5.3.4 and are developed separately for the two cases of unsteady perturbation moticn: longi- 
tudinal and lateraldirectional. Tkis development appears in the following four sections and 
lead- to expressions of the following form: 

*Note that the aeroelastic ivcrcment is a quasict:itic ac'roclastic clfc'ct of' rcsidual tlcxibility : 
hence there is an  acroclastic iiicremcnt for cctct'ticients of free vibration inodr shapc 
amplitudes. 
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6.3.2. I Lo~2udiml morion and tigid oircm/r. -Assuming the unsteady perturbation 
motion to be rwtricted to lon$tudind motion. the mrtrices appearing in equations (63lO), 
(6.3-1 I), and (6312) are assmcd to be expressed for the symmetric aircraft case-sections 
3.4.1.5 and 4.2.5. Introducing this restriction and substituting equation (6.340) into equa- 
tions (6.3-1 l )  and (6.3-12) leads to the desired result. In carrying out these operations the 
flow incidence vector {*}p is expanded as in section 35.2. I to fmd the following: 

a) Rigid body forces due to  steady rigid body perturbation motions: 
S is0 

EFUIB S = 

where the superscript S refers to symmetry about the planc of symmetry of the 
aircraft and where. as in section 5.6.4.1. 

b) Ri@d h y  forces due to unsteady ri3d body perturbation motions: 
i c - ir;), = < 1 r62631~Qh151 

(6.3-15) 
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d) Generalized structural forces due to steady rigid body perturbation motions: 
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e) Ge.rera!ized structural forces due to unsteady iigid body perturbation motions: 

(6.3-18) 
wherc 

f) Generalized structural forces due to structural perturbation motions: 

(6.3-19) 

6.3.2-2 Latemldirectiomd motion-Assuming the unstea erturbation motion to be 
rwtricted to lateraldirectional motion, the matricxs appearing qquations (6-3-10), (6.3-1 I), 
and (6.3-1 2) are assumed to be expressed for the antisymmetric &craft case-sections 3.4.1.5 
and 42.5. Ir?troducing this restriction and substituting equatioii t6.3-IO) into equations 
(6.3-1 1; and (6.11 2) leads to the desired result. In carrying out these operations the flow 
incidence vector { *}p is expanded as in section 3.5.2.1 to find the following: 

a) Rigid body forces due to steady rigid body perturbation motions: 
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(63-2 1 ) 

Where 

c) Rigid body forces due to structural perturbation motions: 

where the superscript A refers to free-vibration mode shapes antisymmetric with 
respect to  the plane o f  aircraft symmetry. 
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d) Cenerdrted s*huctucal forces due to steady rigid body perturbation motions: 

' I  - CQtI = ql[(CHe,I + C w e R 3 ) ( Y ~ I ~ 1  - Ci$I{ADBIg 1 
R 

e)  Generalized structural forces dut to unsteady rigid body perturbation motions: 

<?,I -A = Q 1  ~ & H e R I ~ Y &  1 

{i$} = [6HeRI{YR}u1 1 

R 

{$I 2 = c 1 [6E$j.,j{Ur P 15 U'1 (6.3-24) 

R 

. .  where 

[ 6 H e R 1  E [H,IcTT,I[6A,,I 
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f! Generalized structural forcxs due to structural perturbation motions: 

6.3.2.3 Aeroelastic increments to the tinsteady perhirbation aerodytramics. -The aero- 
elastic increments to the unsteady perturbation aerodynamics are derived by applying the 
expansion of the aeroelastic matrix, sEcCon 5.3.4, when the total flexibility of the structure is 
replaced by the residual flexibilihr. Le.. 

(6.3-26) 
where the aeroelastic matrix is given by 

The expansion pmceduk of section 5.3.4 then leads to the formulas appr ing  in the follow- 
ing two sections in which longitudinal and lateral-directional motions are treated separately as 
in sections 6.3.2.1 and 6.3.2.2. 

6.3.2.4 Lsrigihidinal motion aeroelastic increments. -Assuming the unsteady perturba- 
tion motion to be restricted to longitudinal motion. the matrices appearing in the following 
formulas are assumed to be expmsed for the symmetric aircraft of sections 3.4.1.5 and 4.2.5. 

a) Rigid body forces due to steady rigid body prturbation motion: 

{ A F i )  = ~~[G,IITT,IIDRl-lcAFe~ [?,,,1 [ [TRANS,] 
E 
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where 

while i%] and [A641 are defined by equations (6.3-13) and (6.3-26). 

b) Rigid body forces due to unsteady rigid body perturbation motions: 

c) Rigid body forces due to structuril perturbation motions: 

(6.3-29) 

(6.3-30) 

where the superscript S refers to free-vibration mode shapes which are symmetric 
with respect to the plane of aircraft symmetry. 

d) Generalized structural forces due to steady rigid body perturbation motions: 

(6.3-3 1 ) 
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where 

e) Generaked structural forces due to  unsteady rigid body perturbation motions: 

(6.3-32) 

and [ HT] and [ As: 1 axe defined by equations (63-1 3) and (6.3-26). 

Generalized structural forces due to structural perturbation motions: f) 

where the superscript S refers to free-vibration mode shapes symmetric with 
respect to the plane of aircfaft symmetry. 

6.3.2.5 Lateraldirectional motion aeroelastic increments. -Assuming the unsteady per- 
turbation motion to be restricted to lateral-directional motion, the matrices appearing in the 
following formulas are assumed to be expressed for the antisymmetric aircraft case of sections 
3.4.1.5 and 4.2.5. 
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a) Rigid body forces due to steady rigid body perturbation motion: 

where 

while L+l is d e h e d  by equations (6.3-13). 

b) Rigid body forces due to unsteady rigid body perturbation motions: 

(6.3-35) 

c) Rigid body forces due to structural perturbatian motions: 
A f: .4 

[AFulIF I = 4 , I G  RaE1[’$ 1 
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whzre the superscript A refer, to frt?e-vibri:io,i niode shapes which are antisym- 
metric with respect to the plane of aircraft symmetry. 

d) Generalized structural forces due to steady rigid body pertuibation motions: 

(6.3-37) 

c) Generaked structural forces d?;e to unsteady rigid body perturbation motions: 

(6.3-3 8 ) 

Generalized structural forces dut. to perturbation structural motions: 
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where the superscript A refers to free-vibritim mode shapes which zre imtisym- 
metric with respect to the plane of aircraft symmetry. 

6.3.3 Combined Aerodyt::imic Matrices 

The aendynamic force coefficient matrices developed in section 6.3.2 are combined in 
t h i s  section to form the aerodynamic matrices [A$ and [4 appearing in Pquations (6.24) 
and (6.2-5). These matrices incorporate all of the terms appearing in the distributed aerodj- 
namic forces described by equation (6.3-10). Thus. in addition to the aerodynaniic force coef- 
ficient matrices. the matrices [A$ and 14 contain the aeroeldstic effects of the propulsion 
system gyroscopic couples and of the inertial loading from structural dynamics. The resulting 
matrices are as follows: 

6.3.3.1 I A 1 l .  A coejPcient of [l'}p 

(6.340) 

where 

t CFGl 

(6.343) 

(6.3-44) 

( 6 . 3 3 5 )  
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and 

A 6.3.3.3[A31! coefficiefit of { i i ~ } p  

where 

and 

I 
rCAFs u l A E  1 I ze ros  

t-- 
ze ros  I CAF" I. 

--- 

u1 . t I 

C A A ,  1 =- 
- 3  

(6.348) 

(6.3-49) 

(6.3-5 0 )  

(6.3-5 1 ) 
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where 

[ A  1 
R4 

CAA, 1 
=4 

I 

I 
-t 

I 
I 

z e r o s  1 
,--A- 

ce 1 1.1 (6.3-52) 

t [Fc] (6.3-53) 

and 

as 

A 6.3.3.5[A5]. coefficient of fi?*]p 

[ A t 1  = CAR I t CAAE 1 
(63-55) 5 5 

where 

[ A R 5 ]  f 

z e r o s  1 
I z e r o s  
I 

-I - i- --’ 

I 
I 6.3-56) 

with 

(6 .3-:8)  



(63-59) 

the gyroscopic matrix [GI being defmed in equation (62-24). 
- 
6.3.3.6 [a1 1. mficiei. t of {V}p 

A Call = Ca, 1 + CdaEll (6.360) 
1 

+ cQG3 
f and 

with the gyroscopic matrix [GI defined by equation (6.2-23). 

6.3.3.7[;./. coefficient of { f ) p  

La,] A = LaR2] + CAaE21 

(6.3-63) 

(6.3-64) 
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Where 

[aRt] E 

and 

with the gyroscopic matrixlG1defined by equation (6.2-23). 

and 
r I 

(6.347) 

(6.3-69) 

(6.3-70) 

(6.3-7 1 ) 
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where 

with [E#ldefind by equation (6.2-28) 

where 

L 
P 
'11 L 

CLQ: 1,. 
- -  

zeros E 
I 
1 zeros 

A I CQ;; 3, 
I 1 

I zeros 
I 

- I -  - -  
I CAQ&I, 
I 

(6.3-75) 

(6.3-?6) 

(6.3-'77) 



with 

and 

with 

and 

9, cs2 1 [€&I 

\ -  

6.3.4 Empirically Corrected Aerodynamic Force Coefficient Matrices 

The mnected static perturbation aerodynamic forces of sixtion 5.83.6 are incorporated 
into the aerodynamic Force axffrcient matrices appearing in the preceding. This operation 
leads to the modified forms for the acrodynamic force mfficient matrices listed in fie 
following. 

The empirical corrections affect only the steady aerodynamics; hence, the matrices 
involving unsteady aerodynamics are unchanged. Also, the matrix equations for the static 
stability derivatives in section 5.6.4 are identical with the equations describing their counter- 
parts among the aerodynamic force coeffcient matrices This identity idso holds for their 
corrected iomis; hence, the corrected forms for these aerodynamic force coefficient matrices 
are given by the equations of sections 5.8.3.7 and 5.8.3.8. The aeroelastic increments to the 
static stability derivatives are described by equations nearly identical to those describing the 
aeroelastic increments to the corresponding aerodynamic force coefficient matrices. The sole 
difference is that the flexibility matrix is replaced by the residual flexibility matrix to obtain 
the aeroelastic increments to the aerodynamic force coefficient matrices. The corrected forms 
are, therefore, given by the equations of sections 5.8.3.9 md  5.8.3.10 when this substitution is 
incorporated. 

The only corrected forms for the aerodynamic force coefficient matrices that do not 
appear in the preceding are those related to generalized structural forces, i.e., equations 
(6.3-17), (6.3-23), (6.3-3 I ) ,  and (6.3-37). The corrected forms for these equations are as 
follows: 
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+ CTRANSIDIEPtJ{D I ]  1 + 
1 1 

where 
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6.3.5.1 Dynamic stluctwal loo&. - The FLEXSTAB system computes dynamic loads 
similar to the static loads of section 5.7.3 for the elastic axis method wherein the net h d s  are 
formed at the (6=) degrees of fmdom. 

The distributed dynamic airloads, including aeroelastic effects from propulsion system 
loads, { #/p, are ghwn by equation (6.3-10). Thm loads are tnnsfonned to yield applied 

, structural  ads using the transformation 

(4.2- 1 16) 

where ( e] describes the applied dynamic airloah at the elastic axis system when the trans- 
formation [ PT ] is generated as in section 4.3.5. Finally, the inertial loads are introduced by 
the transformation 

(4.2-53) 

= CPlfQA)p (6.3-79) 

The dynamic loads are generated in coefficient fo? i.e. as coefficients of the perturba- 
tionmotionvariableswntainedin thematrices (V)p, (V},, I U , } ~ ,  { ; l )p , and(~  
control surface deflections 6e, %, and 4. The development of the formulas which generate 
t h e  dynamic load coefficients follows the development of the aerodynamic force coefficient 
mat ‘ces of section 6.3.2. The dynamic load coefficients are obtained from equations (6.3-14) 

and of 

through (6.3-36) by introducing th.~ following SUbStitutiOns: 

wherein 

(3) 

(6.3-80) 

(4.3-208) 

(6.3-8 1 ) 

(6.342) 
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where 

and 

the quantities [GI and [c#] being defined, respectitvely, by equation (6.2-23) and (6.2-28). 
Equation (6.3-86) yields the structural loads due to the values of the elements of the perturba- 
tion velocity vector, {V}p. Equation (6.3-87) describes the structural loads due to the rates of 
r-hmgc of the structural degrees of freedom, viz., (il)p. In both cases, the structural loads are 
hose from the gyroscopic couples and attendant aeroelastic effects. 

. Because of the clae  analogy between the dynamic !gads coefficient matrices and the 
aerodynamic force coefficient matrices of section 6.3.2, a separate derivation of the dynamic 
loads coefficient matrices is superfluous; the appropriate matrix equations are written, in com- 
prison with the matrix equations of section 6.3.2, as follows: . 

z - .  -- ./ 
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6.3.5.2 Unsteady pressure distribution.-In addition tc  the pressure distribution in the 
steady, refeience flight condition, the FCEXS’TAB system computes the pressure distrbutians 
induced by accelerations. These pressure distributions are determined by the second term of 
equation (3.4-2 18), viz., 

Applying the transformation from pressure to  panel forces, equatioti (3.5-33), and iiitroducing 
the residual flexibility form of the seroeiastic matrix, equation (6.3-7), the unsteady aerrs 
dynamic forces are found as 

Finally, using the transformation [Tip!. . quation (5.7-17), the unsteauy Iicung pl-essures are 
found as 

(6.3-89) 

Introducing the expansion of :he flow incidence rate of sectipn 3.5.2.1, the unsteady 
lifting pressure is expressed as that arising frc;r components of $PM}P and (e*),. This leads 
to the following relations: 

and 

where 

(5.3-90) 
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6.4 LINEA? DYNAMIC ANALYSIS 

The FLEXS1'AB system performs a linear dynamic analysis by integrating the linear form 
of the equations of motion, section 6.2.2.2. Because the qui t ions  a-e linear, their integrals 
are found in terms of exponentials and arc senerated by solving an eigenvalue problem. The 
eigenvalues yield the natural frequencies and damping characteristics of characteristic modes 
of aircraft motian described by the eigenvectors. The final forms af the dynamic character- 
istics computed 'my the FLEXSTAB system are compu:ed from the eigenvalues and eigen- 
vectors deduced from the equations of motion. 

The linear equations of motion are collecttd in section 6.4.1 from the development of 
the preceding sections. These eqratims x'tt then formed into the systems of fint+rder, linear 
differential eqiiatiora integrated in the FLEXSTAB system by solving the corresFonding eigen- 
value problems. This process is synonymous with rooting the characteristic equation obtained 
from the equations of motion. section 6.4.2. The dynamic stability characteristics, section 
6.43, are computed from the characteristic roots (Le.. from the eigenvalues) and the char- 
acteristic modes of motion (Le-, the eigenvectors) are camputed n o d r e d  with respect t e  
the perturbation pitch attitude, @p and the perturbation bank angle. + The dynamic sta- 
bility derivatives and control effectiveness values are computed from the aerodynamic force 
coefficient matrices develqed in section 6 - 3 2  This computation is based oil transformations 
appearing in section 6.4.4. 

- 

6.4. I Linear Equations of Motion 

The linear equations of motion arc given by cquitions (6.2-33) and (6.2-34), together 
with the aerodynamic matrix equations given by cquationi (6.24) and (6.2-5) whose c0eff1- 
cient matrices are det. 4 in 6.3.3. As a collected set of equations they appear as follows: 

CXI{OI, + C M M ~ I { V I ~  + Cm23{r0), = 
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Equation (6.4-1) constitutes the rigid body equations of motion, while equation (6.4-2) con- 
stitutes the structural equations of motion. The objective of this section k to combine these 
two s of equations of notion into a single matrix equation having the following form: 

This equation poses an eigenvalue problem. The solution, in the form of eigenvalues and eigen- 
vectors, Lzqkies the dynamic stability characteristics of an aircraft-a principal result 
computed in the FLEXSTAB system analysis. 

In the following the equations of motion. as given by equations (6.4-1) and (6.4-2), are 
arranged in the eigenvalue problem form for six separate cases. These six cases derive from 
three possible cases of rigid body motion and two possiile cases of structural behavior. The 
three possible cases of rigid body motion are longitudinal motion. lateraldirectional motion, 
and coupleh longitudinal and lateral-directional motions. The two possibl: cases of structural 
behavior are partially independent structural motion and totally dependent structural motion. 
In the case of partially independent motion, the (u2)p degrees of freedom, section 4.2.4.3, 
are dependent variables while the (u 1) p degrees of freedom are independent variabies. In the 
case of totally dependent motion, all slructural degrees of freedom are depenuent variables. 
The vector (9) and the matrix [HI are different in each of the six cases. 

lateraldirectioiial motions with independent structural motion, the vector {q} is given by 
The six possible vectors { q} are as follows: In the case of coupled longitudinal and 

(6.4-5) 
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where u, v, md w are perturbation transhtional velocities; p, q. and r are perturbation rota- 
tional velocities;#p $. and $p are perhwbations to the €der angles, equation (2.2-1 ); and 
{ uf } and (+} p are perturbations to the free-vibration mode deflection amplitudes- 
symmetric and antisymmetric, respectively. In the case of longitudinal motion the vector is 
given by U 

w L,_ 
P 8 

and for the case of lateraldirectional motioai it is given by 

{q"} E 

(6.4-7) 

r.ependent (i-e., quasistat:c*) structural behavior the vectors { u s )  p, 
p do not appear in the vector {q}. The primary objective of this section 

matrices corresponding to each of the six cases. 
. 

pled motion ar.d totally dependent structural behavior thc vector { q} is given by 
6.4.1. I Ckirpled motion and totally dependent structuuml belrovivr. -In the case of cou- 

U 

W 

Q 
V 

? 
r --- 
eP 

9, 

yP 

(6.48) 
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and the IH Imfficient matrix is expressed in terms of four partitions, viz., 
ce-121 

"" [:::I: [K32ll 

where the partition matrices are given by 

cG111 E ([MI - CA21) (CAI] - CMMI]) 

and 

CGi21 E -([MI - CA21) CMM2l 

- 
0 0 -COSl$I 0 0 sin#l 

0 0 -sin$ltanel 0 -1 -cos#ltanel 

0 0 -sin#lsec81 0 3 -cos#lsecel - 

(6.4-9) 

(6.4-10) 

(6.4-1 1) 

(6.4-12) 

The matrices ID3 I] and 
ratesip, 
Body Axis System relative to the Inertial Axis Systez, sections 2.2.1 atid 1-22 

3re derived from the rigid body kinematics rela:ing the rotation 
&p to the rotation rates p, q, r, and the perturbations lo the orientation of the 

6.4.1.2 Coupled motion and indepencfent stnictural motion.-!n the ca: xdependent 
structural motions and coupled rigid-body motion, the strxtum! equations 01 . .)!ion, equa- 
tion (6.42). are combined with the equations of the prcced-itig section aid the vecior { q }is 
given by equation (6.4-5). A matrix[ J ]is formed of the codficients of - - 

13;, 
--- 

1 I C ~  I~ J 
This matrix is formed of the partitions 

(6.4- 14) 

(6.4-1 5 )  
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where 

CJ221 Em,J - La,] 
The matrix [Jlccntains the inertia-both mass and aerodynamic. Damping of the aircraft is 
described by the matrix [ D] having the partitions 

This matrix contains the coefficients of 

p, 
LC;'}p ' I  

(6.4-1 6) 

(6.4-1 7) 

Hence, as seen by reference to equations (6.4-1 ) and (6.4-2), the part~tions of the matrix [ D] 
are given by CDl1I CMMlI - CA1I 

CD2,1 = - i~ 4 I 
Stiffness of the aircraft is described by the matrix [K] having the partitions 

This matrix contains the coefficients of 

(6.4-18) 

(6.4- 1 9) 
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where 

Hence, as seen by reference to equations (6.4-1 1 sild (6.4-2), the partitions of the matrix [K) 
are given by 

C K 1 3 I  CY&] 

CK2sI E COI (6.4-2 I )  

Combining the above relatiors (Le.. ec-uations (6.4-14) through (6.42 I)), the equatiom of 
motion are obtained as follovs: 
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where 

(6.4-24) 

The matrix fD3 11 is identical to that defined by equation (6.4-12), while the matrix partition 
[K33j is identical with [K3’ldetined by equation 16-4-13). The equations of motion are now 
expressed in eigenvalue prGblem fohn, Le.. equation (6-44), as follows: 

€ql  = ( 0 )  
(6.4-25) 

C o l  
I 
I 

The matrix appearing as the coefficient of {q} is the desired coeftkient matrix [ Hlof the 
eigenvalue problcn. 

6.4. i. 3 Lotrgititditiaal ntotion arid totally depridetit strirctural behavior. --The perturha- 
tioii equations of motion can be reduced to those governing motion in the X, Z plane of the 
aircraft, i.e., longittudiid motion. when certain conditions are satisfied. One condition is on 
tlir reference flight condition and consists of the requirement that 

(6.4-26) 

6-5 1 



Thus, the reference flight condition must consist of wings level, nosi-roUing, non-yawing flight, 

is presumed that antisymmetric motion is unperturbed, Le., 
and the engine gyroscopic couples $ G and h 2  must be zero or negligibly small. In addition, it 

(6.427) v = 0 p = r = 0 ,  and I$ = 0 P 
In these cases, the rigid body equations of motion, equation (6.4-l), become, for totally 
dependent structural behavior, 

CMsl{dS}, + CMMf3{Vs}, + CMM:l{r:)p = 

(6.4-28) 

where 

and 
-case 

[MM;] E [-s;Oi i] Mg. 
The equatitns of motion are expressed in terms of the vector 

(6.4-29) 

(6.4-30) 

(6.4-3 1) 

(6.4-32) 

as 

(6.4-33) 
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where [q]k given by equatiop (6.4-9) but the piwtitions of 
IK331, become 

.:orresponding to(D311 and 

[Ds11 E L O O - l f  

The coefficient matrix, therefore. is given by 

LO 0-1 

wherein the partitions are as follows: 

. J I  O J 

I 

(6 -4-34) 

i6.4-35) 

and (6.4-36) 

6.4.1.4 Luteral-directional motion and totally dependeitt srizctciral behavior. -Assuming 
that the conditions listed by equation (6.4-26) are satisfied snd, in addition. that there is no  
reference flight condition sideslip, the longitudinal perturbation motion can be assumed 
unperturbed, Le., 

u = w = O , q = O a n d B p = C  (6.4-37) 

In these cases, the rigid body equations of mOtiGi!. equation (6.4: 1. become 

(6.4-38) 

where 

A -  CM I = 

- 
M 0 

Ix:: 0 
?; z 

7 2  
-: I I (0.4-39) 
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and 

1 -Md 1 MU 1 

The equations of motion are expressed in terms of thc vector 

as 

€qAl 

(6.440) 

(6.44 I ) 

(6.4-42) 

r 
where [Hf] is given by equation (6.4-9) but the partitions of LHf], corresponding to ID3 11 
and [Ks~], become 

-tan6 1 [: 0 -sect3 1 I -1 
A CD,iI 

and 

The coefficient matrix. therefore. is given by [ - - - _ _ _  [6111! C C 1 2 1 ]  

CC,,ll C K 3 2 1  

[$I 

(6 .444)  
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wherein the partitions are as follows: 

6.4.I.S Longihidinal nio!iori urid iitdepeiidcnt symmetric strticttiral motio.n.-In the case 
of longitudinal motion with independent structui-al motion, thc structural equarions of 
motion, equation (6.4-2), are reduced to the case of symmetric structural motions. They are 
then combined with the rigid body equations of motion when the latter are exprmed for the 
case of longitudinal perturbations, section 6.4.1 3. The rzferencr fight condition is assumed 
to satisfy equations (6.4-26), and structural perturbations are assumed to be such that 
(up} P = ( 0 )  for all time. The equations of motion are expressed in eigenvalue fonti, i.e., 
equatim (6.44), as follows: 

where the coefficient matriv has the form giveli by equation (6.4-25), Le., 

(6.4-1s) 

whei; iJs], [Ds], and [KS] are formed following the definitions of cquations (6.4-15). (6.4-16). 
and (6.4-19; bct wit!i the elements computed using the definitions given by equdtions 
(6.4-20), 6-4-30), and (6.4-3 1). The vector {qs }is given by equation (6:1-6), while the parti- 
tions [ I jband [Kf3]are those defined by equation (6.4-34). 

6.4. I .  6 Latera!-directio.vul motioti u r d  indeperideu! antisymmetric, stnrctrir;rl inolioti. -11, 

the case of latcraldirectional motion with independent siructurdl mntiori, the struct~ial  equa- 
tions of motion, equation (6.4-2), are reduced to t!ie ciW of antisymnielric motion and are 
combined with the rigid-body equ3tioiis of motion when the latter arc expressed for the case 
of lateraldirectional perturbations, section 6.4.1.4. The reference flight condition is assumed 
to satisfy equations (6.4-26) with the. added requirement that the reference flight condition 
siteslip velocity is zero-Vl = 0-and the structural perturbations are assumed to be SUC I that 
.,? P = 0 for all time. The equations of motion are expressed in the eigcnvalue form, i.e., 

equation (6.4-4) as follows: 
(6.4-49) 

{:e4} t [iiA1{qA! = I O )  
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where the coefkient matrix has the form given by equation (6.4-25 j, Le., 

(6.4-SO) 

wheic[jA], IDA] and (KA]are formed following the definition of equations (6.4-15), (6.4-16), 
and (G.4-19) but with the elements computed using the definitions given by equations 
(6.4-39), 6-4-40), and C6.441). The vector {SA} is given by equations (6.4-7), while the 
partitions, - DA]and [KA] are as defined by equations (6.4-44). 

6.4.2 Characteristic Lquation Rooting 

t 
The linear dynamic analysis performed by the FLEXSTAB syitem is an evaluation of the 

eigenvruues and eigenvectors of equation (6.44), Le., 

€4) + CHIcq) = {Ol 

The coefficient matrix [HI is a nonsymmetric matrix having real elements, and the eigenvalues 
and eigenvectors are conrputed by the following sequence of operations*; (1) nduction to  
upper Hessenburg form; (2) generation of eigenvalues by QR iteration, (3) shifting and defla- 
tion, and (4) generation of eigenvcctors by the inverse power method with shifts. The eigen- 
values and eigenvectors are denoted as i and q i. The eignvalues may be real : !mbers, or 
they may be found to bc compiex conjugate pairs of numbers. Since the motion implied by an 
eigenvalue and eigenvectx cmsists of 

(6.4-5 1) 
a real eigenvalue implies exponential time dependence, while a cmplex conjtigatr: pair 

X i  = n . 2  iw. 
1 1 (6.4-5 2) 

implies harmonic time dependence with frequency a i  and with an exponential variation in 
amprtude. 

6.4.3 Dynamic Stability Characteristics 

The dynamic stability characteristics Tmputed by the FLEXSTAB system are as 
follows: 

a) time and number of cycles of each harmonic mode of motion (i.e., eigenvector 
(q} i j  to one-hd;' (or double) and one-tenth amplitude 

b) frequency and period of each harmonic motion 

*These opir.;ilons :Ire described i n  detail in section 9.5 of volume Il l .  
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c) Logai-t!imic decrement and ratio of successive rndximum amplitudes of each har- 
monic mod,, d motion 

d) undamped natural frt;q::%ncy of each harmonic m d e  of motion 

e) damping ratio of each mod;: 

f) phase and amplitude of r ildal coupling terms 

These quantities are computed from the eigenvalues and eigenvectors as fol!ows: 

0.4.3. I Times to one-half and one-renth amplitude.-The periods of time to one-half 
amplitude (tipx), t3  double ampiitude it?,), and one-tenth amplitude ( t l /  are: 

For harmonic motion the nuilrber of cycles to one-hdf amplitude (k I ; ~ ~ ) ,  double amplitude 
 NE^) and one-reath amplitude (Nlilox) are: 

6.4.3.2 Fr:!c;fienc:p and period. -The frequency oi a harmonic motion is computed as 

€I Z (6.4-5 6) wi 
f i  = F 

and the period is computed as 

T. E - 
i 1 w  2.rr seconds (6.4-5 7 ) 

6.4..?. 3 Logdri.hmic decretnenf.-The logarithmic decrement bi ( i s . ,  thz natural loga- 
ritbfi of the ratio of successive maximum aniylit~!des of liarlnonic motion) is computed as 

i n 
6 i  - - - 2lT- w .  

1 
(6.4.58) 
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6.4.3.4 i'ndarnped natural frequency.-The undamped natural frequency of a harmoniL 
motion i;  computed as 

(6.4-59) 

6.4.3.5 Damping ratio. - She damping ratio (i.e., the ratio of actual damping to critica! 
damping for which harmonic motion is suppressed) is computed :IS 

i 
i 

n T i - - -  - 
w (0.4-60) 

6.4.3.6 Phase nn i amplitude of modal coupling.- Each cigenvector {q}i is, in genera:, a 
\ ector with complex elempnts representing the relative -mplitudt.s and phase rc.Iation&ips or 
h e  quantities describing a characteristic mode of aircrdft perturbatior moricn. Cc.lsidering 
the example of icupled motion with independent structural motions, sectiun t.4.1.2, the vec- 
tor (9) for the iLn chmcin:istic mode of niutioii is given by 

a (ni+iw.)t 1 is),= Eq 1 . 2  1 

where the asterisk denores the elements to be domplex numbers. 
given by * -  u .  = uRi + jjiIi. 

1 

(6.4-61) 

?%e fust element of {q*}i is 

where uw is the real part and U I ~  is the imaginary part of the complex velocity component 
representing a perturbation to  the forward velocity of the aircraft. The amplitude of this vr -3- 

city component is given by 

while the phase angle i s  giveti by 

The relative amplitudes arld philse angles are comrpritzd by normalizing the elements of the 
eigenvectors with respect to one of the elements In the FLEXSTAB system they are normal- 
ized with respect to the perturbation pitch attitilde, 8p, and the perturbstior, bank angle. @p. 
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6.4.4 D y m i c  Stability Derivatives 
The following dynamic stability derivatives are computed by the FLEXSTAB system. 

They are formcd from-the -1eredy;lamic force coefficient matrices of section 6.3.2 and equa- 
tions (5.6-24) 

(6.4-62) 

cosa; sinal 01 
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where 

(6-4-68i 

(6.4-69) 

(6.4-70) 

(6.4-7 1 ) 

(6-4-7 2) 

O 1  r sinal --cosal (6.4-73) 
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and 

0 cosa s i n e  

0 -3ina cosa 

A 1 [DER 1 E -- 
F'Sm 
- 

- 

(6.4-74) 

Ea& of these dynamic stability derivatives is computed by FLFXSTAB for the fdowing 
cases: flexible aircraft derivatives, rigid aircraft derivatives, and as aeroela_ctic increments. The 
computations and the computed results are completely analagous to the static stability tierim- 
tives of section 5.6, and the computed results are nondimensional in accord with table 5.64- 

In addition to the dynamic stability derivatives, the system computes the following con- 
trol effectiveness values: 

Where 

(6.4-75) 

where 

(6.4-78) 

(6.4-79) 



Where 

(6,482) 

(6.4-83) 

(6.4-84) 

(6 -4-86) 



Where 

(6.4-91) 

(6.492) 

In addition to the above control et'fecti-..-.tess iralues, the FLEXSTAB system colr.putes 
the following generalized aerodynamic foxes conjupte with the free vibration modt shape 
amplitads: 
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(6.4-98) 

(6.4-99) 

(6.4-100) 

(6.4-1 01 ) 

(6.4102) 

(6.4-103) 

(6.4-104) 

6.5 NONLINEAR DYNAMIC ANALYSIS 

The nonlinear dynamic analysis is perfon id by integrating, by a numerical method, the 
nonlinear equations of motion. The numerical ..lethod is the fifth-order Kunge-Kutta method 
and may be executed using a fixed step size or a variable step size. Initial conditions may he 
c h r a n  as arbitrary initial values for the perturbation variables. Only one type of forcing func- 
tion is currently used-that due to penetration of a discrete gust. The gust velocity distribu- 
tion, section 6.5.2, may bc a sine wave, a one-minuscosine mvc, or a modificd square wave. 

The nonlinear character cf  the equations of motion may arise frcrni a combination of 
causes. Perturbations to the motions may be so large as to require the nonlinear equations for 
rigid body motion of section 6.2.2.1, or the rigid parts of the aerodynamic matrices, section 
6.3.3, may be functions of the perturbation motion variables. In the lattcr case, the aero- 
dynamic force coefficients are supplied to  the FLEXSTAB system in tabular form much as in 
section 5.3.5.2-the ncnlinear trim problem. 

6.5.1 Nonlinear Equdions of Motion 

For a nonlinear dynsmic analysis thr equations of motion, equations (6.2-29), are 
expressed in the iollowing special form: 

(6.51) 
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(6.5-3) 

Equation (6.5-1), when integrated, yields the perturbation rigid body velocity, while equation 
(6.5-2) yields the structural perturbations. These equations are coupled SI) that they are inte- 
Btated simultaneously, and because the quantities which are computed are 

+ * + 
ro , , I Vc 1 np ( i . e. , p e r t u r b a t i o n  load factor 1 

and dfoc 

the equations describing these quantitie. must bt ::.teated as well, reference 2-2, section 4-12. 

6.5.2 Nonlinear Aerodynamic Data 

The aerodynamic forces contained in me equations of motion, viz., the matrics [ A t  J and 
[ A t ] ,  are expressed as the sums 

and 1 
[AA] = [A, 1 + [PAEl]  

(6.5-4) 1 

The elements of [AR 1) and [AR$ section 6.3.2, contain the aerodynamic force coefficients 
ford rigid aircraft. These quantities may be supplied to the FLEXSTAB system expressed as 
functions of the perturbation motion variables. This functionality is expressed in tabular form 
with each clement as a function of two variables contained in { V}p and { V } p  one of which is 
always w. 



The rigid aircraft data are supplied to the FLEXSTAB system expressed in the Stability 
Axis System and in a nondimensional form consistent with table 5.6-1. This data may be used 
to construct any of  the elements of [ARI 1 and [ A R ~ ]  shown as non-zero in the following 
two equations: 

(6.5-5) 

U 

[A,1] = 
-I- - - - - - - - - - - - - _ _ _  - 

0 

MA xw 
MA 
zW 

0 

0 

8 ' xv 
' M A  
I zv 

MA 
xP 

MA 
zP 

' 0  0 0 
I 
I o  0 0 

(6.54) 

Any threeelement colun, 1 . L partition of [AR I 1 and (AR - 7) s a y  be described Ir? :he :di ..2 of .- 
nonlinear tabular data, e.g., 

U 

f (6.57) 

l? 

6-66 



and 

In thb example the values for the elements( FSjR in [ X R ~  i ,  computed from eqrtziron (6.3-14), 
are replipd by values which are functions of the perturbation velocity components u and w. 

The tabular a& define the following aerodynamic force coefficients: 

(6.5-9) 

where, fc,r example, CL(i) denotes the value of the lift coefficient for the ith set of values of 
the vaiiables chosen from { Vp). The tables which may be ?ttppkcf to the FLEXmAB system, 
shown in graphical form, am the following: 

6.5.2.1 Nonlinear steady aerodynamic data 

1) Tables for construding [ Fz(u,w)) R, { F z ( u , w ) ) ~ :  
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2) Tables for constructmg iFbw,Pj ,- 

3) Tables for constructing ( F~(W:V))R,  (F%,v,)R: 
-1 v C, = Ca(a,6) , C1, = Cn(o,B)5 3 t a  - u1 Cy = Cy(a,B) 

4) Tables for constructing ( F # ( w S ) ) ~ ~ .  
A A A 

Cy = CyCa,p) , C, = C,(a,P) , Cn = Cn(a,P) 

5 )  Tables for constructing { F$(W,P))R: 
A A A 

CL = CL(a,p) , CD = CD(a,P) , % = C,(a,P) 

6) Tables for coxtructing ( F 3 w . r ) ) ~ :  

7) Tables for constructing { Ff(w,r))R: 
.. A A 

8) Tables for constructing ( FS(WJ)}R: 

6.5.2.2 Nonlinear unsteady aerodynamic data 

1 ) Tables for constructing (F+(w,W’.) S R : 
A 5: c 

CL = C L ( o ; , a ) ,  CD = C,(a,ai, cm = C m ( a , f h  

where 

2) Tables for constructing ( F a  S (w,qjJR: 
9 

A A n 

CL = C L h , ; I ) ,  cu = CD(Q,i), cm = cm(a,;) 
where 
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3) Tables for constructing { F+ A (w,;)}~: 

n h 

cy : %(a,;), cB = Cg(a,B), 

where 

2 n 

Z Gb12U1 
4) Tables for constructing { FP A (w,P))R: 

5 )  Tzbles for constructing { Faw,i)}R: 

where 

6.5.2.3 Nonlinear aerodynamic data transformatiom-The tabular d3t3 appearing in ths 
a!.we two sections are used to construct nondimensional dynamic stability derivatives which, 
in turn, are transforn;ed to the aerodynamic force coefficients appearing as the elements of 
the matrices [ . A R ~ ]  and (AQ]. The aerodynaniic coefficients contained in equation (6.5-9) are 
transformed to aerodynamic forces letting 

c g  - Xref)/c A5 E (X 
(6.5-1 0) 

where X 
and the reference point about which the monients II, my n of the aerodynamic data are mea- 
sured. The transformatiors are 

and Xr,:f are the Reference Axis System Goordinates of the aircraft center of mass cg 
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where 

where 

i -cos3 

_d = [DER 1 

0 

i -ccsa 

-sinor. 

ZChs inai 
1 

0 

-A = -  
i [DER I - q,sy bcosp. -bsir,a 

(6.5-12) 

In addition to these force transformations, the nondimcnsional velocity components are trans- 
formed to dimensional velocity cornponenk as 

(6.5-1 3) 

and nondimension?i acceleration components are transformed to dimensio.ia1 acceleration 
components as 

(6.5- 14) 
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6.5.3 Excitation by Penetration of a Discrete Gust 

The FLEXSTAB system has the capability of predicting the time history respoilse of 
flexible aircraft to selected discrete gust fields. This is accamplished by modifying the equa- 
tions of mDtion of section 6.5.1 to in.-lude the effects of gust penetrn'ion (Le., by defining the 
gust as a finite, spacedependent incidence field) a d  the-1 calculating its effects as the aircraft 
passes through. The formulation provi.Jes time history gust response capability for aircraft 
with pitch attitudes near zero or 90 . This cnabks ( 1 )  conventional airplane gust encounter 
calcdations, or (2) the calculation c-shear field gust effects encountered by launch 
configurations. 

6.3.3.1 Coordiiizte systerm-Figure 6.5-1 illustratcs the coordinate systems used. The 
axes of the lnertial Axis System are labeled (X', Y ', Z'), and those of the Body Axis System 
are labeled (XB YB, ZB). Sec:ion 2.2 and table 6.5-1 define the principal features of the two 
axis systems. The gust flow field is cupi::ssed in the coordinates of the Inert-a1 Axis System, 
whiie the velocity of the aircrifl and it5 geometry aii: expressed in ihe Body Axis System. 

TABLE 6.5-1.-PRINCIPAL FEATURES OF THE INERTIAL AND BODY AXIS 
SYSTEMS FOR DESCRIBING A GUST FIELD 

The origin of the Bod) -4xis System is located at (Xb , YA , Zb ) of the Ir,ertial Axis Sys- 
tem. The vector 

(6.5-15) 

locates this point. The orientation of the Body Axis System is determined blv :he Euler angles 
9, 8 ,  $. It can he snown froin figure 6.5-1 that any point (XB, Yg, ZB) is rz - led to the lner- 
tial Axis Sys tm by the expression 
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Y' 

FIGURE 6.5-1.-COORDINATE S Y S ! .  :il S)EFINITlON 
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where the matrixlT)is a rotational transformation matrix defined in terms of the €der angles, 
equation (2.24). 

6.5.3.2 Aimtuft motion in a gust field -As already noted, the gust flow feld is described 
in the lnertial Axis System; hence, to evaluate the gust flow incidence at the aerodynamic 
surface segments, their coordinates in the Body Axis System must be tnnsformed to the 
Inertial Axw System. 1 his transformation depends on the velocity of the aircraft; and, since 
the aercxivnamic t h e  - LS a t’irstader approximation, the transformation is based on a fmt- 
order a p ~ ,  xcimahon t aircraft velocity, viz. 

- 

The components of this velocity in the Inertial Axis System are given by 

W’ -sine 
in the Inertial Axis System. 

(6.5-1 2) 

For the gust pmblem, assume that the origins of the Body A r c  System and the Inertial 
Axis System coincide when t = 0, and that, at all time t >O, the airplane flies in a straight line 
through the gust. The origin of the Body Axis System may then be expressed as 

Therefore, any point (XB, Yg, ZB) may be expressed as 

(6.5-18) 

In the FLEXSTAB system the gust field is assumed to ’be a function of X alone, figure 
6.5-2. Since rectilinear flight is assumed through :he gust, and since it is assumed that the air- 
plane encounters the gust at exactly t = 0, the X location of the first point of the gust, Xg,, 
must coincide with the airplane’s nose at t = 0. This point is found by substituting the coordi- 
nates of the a,,.dane’s nose ( X B ~ ,  0, ZB,.,) iato equation (6.5-19). 

+(cos+ sine cos$ +sin+ sin$)Z Bn 
(6.5-23) 
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Assuming that the gust has length Pg the tenninal point of the gust, X&, is located at  

The gust field is only defmed when 

so it may be considered a function of E, where 

5 = x'- X' , 
gl 

and 

(6.5-2 1) 

(6.5-22) 

(6.5-23) 

If (XB, YB, ZB) is a point on the aircraft, its coordinates in the Inertial Axis System ate found 
using equation (6.5-1 9). If the X'coordinate of that poini satisfies equation (6.5-22), it is 
within the gust field. 

653.3 Gust field velocity ccmponents. -The velocity components of a gust are defmed 
in the Inertid Axis System as (Ug' Vg' Wg)- These are expressed in the Body Axis System as 

(6.5-24) 

The Ug component of a gust causes small dynamic gressux perturbations, while the V and 
Wg components cause sidewash and dcwnwash perturbations. The dynamic pressure perturba- 
tions are of little iml;ortance to  response of an aircmft, so the 'Jg component of tP? gust is set 
to zero. Assuming that most aircraft to  be analyzed wiil have pitch attitudes near either zero 
or No, the Ui gust compnent is also defined as zero. 

If an aircraft has a pitch attitude, 8, of 909 the r rangement shown by figure 6.5-2 leads 
to the nose of the aircraft remaining at the Inertial Axis System coordinate Xi, for all time- 
the aircraft never penetr2tes the gust field. To preclude *:us situation and to  permit gust pene- 
tration for very large pitch attitudes, if the pitch attitude relative to the earth's surface 
exceeds 70°, the Inertial Axis System is rotated so t h t  X' points straight up. In this case, B 
remains the Euler angle in the tT; nsformation from Body Axis System to Inertial Axis Syste rn, 
but 8 is no longer the pitch attitub. in the usual sense of airplane dynamics. In  addition, it 
should be noted that ever though vbitrary pitch attitudes are admissible in practice, they 
should be restricted to near zeru or 90" when computing gust response. The reason for tlus 
restriction is an approximuticn described in thc following, which neglects the effect of the 
gust iield on the dynamic prc,wre. 

g 
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6.5.3.4 Gtlst field flow incidence.-The Vg and Wg gust components are converted to 
incidence fields by using the equation 

n 

+X it' surface segment 

. P Y  

where 

+g is the kcidenee field, and 

n A is the unit ninnal of the airplane's surface 

Within small perturbation theory, the gust incidence rates are approximateiy 

1 -  $: - v  e n  
A -b 

G q g 

(6.5-25) 

(6.5-261 

where 

The symmetric and antisymmetric components of a gust are used separately. Therefore, 
equations (6.5-25) and (6.5-26) must be separated into these components. Consider the i* 
surface segment of the airplane shown in figure 6.5-3. Recalling that Ug ~ 0 ,  the gust inci- 
dence may be expressed as follows: 

2 

(6.5-27) 

FIGURE 6.5-3.-RESOLUTION O.'= GUST ON AIRPLANE SURFACE 

6-76 



Since Wg is the symmetric gust component a;id Vg is the antisymmetric gust component, 
equation (6.5-27) may be written 

- S A tfi, - II, + $g 
- 1 1 (6.5-2s) 

DIH - -V s in6  
u1 g 

- -- w cose*IH U! !z 
S A where #g and #g are the symmetric and antisymmetric gust incidences, respectively, 

6.5.3.5 Gust fieldflow incidence rate--Similarly, we may write 

- * S  * A  tfi, - 9, + JI, 
(6.5-29) 

The term 8DIH is most frequently used when discussing thin bodies. Equations (6.5-28) and 
(6.5-29) apply to slender bodies by defining eDIH = 0" for the symmetric problem, and 
8DIH 90" for the antisymmetric problem. 

65-36 Gust incidence uectors.-Using equation (6.5-23), the incidence vectors are writ- 
ten 

and (6.5-30) 

where the operator " @ " (defined in app. B) is an element mu!tiply of two column matrices 
to form a third column matrix, and { *CY} and { * p )  resolve :he gust incidences into down- 
wash and sidewash components. 

Similar equations for the gust incidence rates tail be found from equation (6.5-29). 

(6.5-31) 
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The gust field described above allows Vk and W i  to be any arbitrary function of €, where 
E is defined by the equations (6.5-=), viz., 

5 = X’ - x’ 
g1 

(6.5-23) 
o i 5 < , a g  

The parameters V’ and W’ are restricted to one of three forms: 1) sine wave, 2) one- 
minus-cosine wave, or 4j rnodiied quare wave. 

6.5.3.7 Sine m e  gust. -Figure 6.54 illustrates a sine wave gust. The parameters Vc, 
Wc, and 28 are supplied by the user. The equations describing this gust are 

and 

The derivatives of Vg and Wg with respect to time are wntten 

cos(--) 2rs. dS 
Ilg dt 

and 

(6.5-32) 

(6.5-33) 

The term d)/dt is feud by considering the motion of the airplane with respect to the Inertial 
Axis System, recalling that 

5 = x’ - X’ 
gl 

Therefore 

dS - dX’ 
dt dt - -  

This can be found by taking the derivative of equation (6.5-19) with respect to time. 

(6.5-34) 

(6.5-35) 
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Finally, the coniplete equations for $; and Wi can be written 

27r 5 cose cos* cos(-) 
g g 

2TU VG 
11 a 

t p  = 

and (6.5 -3 6 )  
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FIGURE 6.5-4-SfNE WA VE GIIST DEFINITION 

6.5.3.8 One-mintis-cosine wave mcst.--Figure 6.5-5 illustrates a one-minuscosine gust. 
Once again, the parameters VG, WG, and !Ig are supplied by the user. The equations describing 
this gust are 

and 

-4 
(Length) 

FIGURE 6.5-5.-ONE-MINUS-COSINE WA VE GUST DEFINITION 

(6.5-3 7) 
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The derivatives with respect to  time are found in the manner described for the sine wave. 
They are 

and (6.5-3t; 

6.5.3.9 Modified sqtime wave gust.-Figure 6.5-6 illustrates the modified square wave. 

g g 
The parameters Vc Wc, and 9 are supplied by the user. Note that the wave's length is Q + 
29.0863 meters. The wave is Qvided into four defining regions. Thw. regions and amplitude 
defimions are listed below. 

V' = W' = 0.07655 
g l  gl 

and 

0 2 E 5 0.9215 

is v a l i d  . 9215  5 5 5 ?S.U863 

v; = W' 
1 

29.0863 I 5 <, R-.9137 

R-.9137 2 5 5 R+29.0863 

2 

4 

Note that all dimensions, except the input values, are in meters. 
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The derivatives of VLand Wg' with respect to time are 

i \ i  - i  i - 1  

I 

I 
I I 

I Q + 29.0863 m I 
Q t 14.0863 m 

I 

1- I 
I 
I 
I 
I 
I 
I 

- I  
I 

I I 

I 
E2 f 

I 
I 

2 s  

I 
I 
I 
I 

- 7  

4-5 

c9= 

I 
2 -0.9137 m 

I I 
I 

= 0.92151~1 I 29.d863m 
I 

14.0863 m 

I 
I 

! \  
-€ 

FIGURE 6.5-6.-MODIFIED SQUARE WAVE GUST DEFINITION 
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6.5.3. IO Glut-field-induced aerodynamic forces. -The aerodynamic forces, induced by 
flight through a gust field, are expressed in terms of matrices derived in this section. These 
matrices relate the perturbation of the aerodynamic forces to two quantities: (1 )  the flow 
incidence imposed by the gust field, and (2) the rate of change of flow incidence imposed by 
the gust field. These matrices are derived from the aerodynamic force coefficient matrices of 
section 6.3.2 and are written as combined aerodynamic ni:ttrices like those apuearing in 
section 6.3.3. The derivation leads to the gust-field-induced aerodynamic forces expressed as 

and 

where 

(6.5-4 1 ) 

(6.592) 

The elements of V are the gust velocity components obtained by applying the transforma- 
tion given by equation 5.5-24) transforming the gust velocity components of sections 65.3.7 
through 6.5.3.9 from tnt: Inertial Axis System to the Body Axis System. 

{ J 



As shown in section 6.5.3.6, the gust incidence matrices of equation (6.5-30) are iden- 
tical, in form, with the angle of attack and angle of side slip incidence matrices given by equa- 
tions (3.5-49) and (3.5-50). The partitions of the coeffilient matrices [Ai] 
plying { W } and { Vg \arc, therefore, the matrix coefficients of 1 llru} and 
section 6.3.2. The coe ficient matrices appearing in equations (6.5-41) and 
written as 

[A,] = 

where 

where 

(6.5-43) 

(6.5-44) 

(6.5-45) 
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Ca,I = 

where 
(6.5-46) 

The gust-induced aerodynamic forces given by equations (6.5-41 ) and (6.5-42) are com- 
bined with the nonlinear equations of motion of section 6.5.1. The matrix [E]  is replaced by 
the matrix [ Eg] , where 

(6.5-47 j 

and the generalized struc?lrai excitation forces ( og) are added to  equation (6.5-2). The 
resulting equations are integrated numerically, evaluating the elements of ( V  ) at each step of 
the integration. The values of ( Vg ) follow from the 4 coordinate, equation (8.5-23), of each 
aerodynamic controi point b-Lg substituted h t o  equation (5.5-25). 
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Aerodynamic centroid-geometric location of the center of aerodynamic PieSSUre acting on an 
aerodyiianiic segtnertt*-approsimated as the geometric cmter of an aerodytraiiiic panel 
and a dender body centerline segment; in volume 11-aerocentroids 

Aerodynamic derivatives-constants of proportionality between aerodynamic forces and small 
&wges of aircraft and trim pmiiicters from the value zero 

Aerodynamic influence coefficients-coefficients in any linear aerodynamic relation, but u d  
herein as the coefficients linearly relating lifting pressure coefficients to flow incidence 

Aerodynamic panel-quadrilateral segment of an acrodyiiamic mean stiflace. the quadrilateral 
having two edges parallel to the free stream direction 

Aerodynamic problem-a boundary \-due problem consisting of a flow equation and boundary 
conditions specified on the aerodynamic surface of an aircraft, on its wake surface, and 
at large distances from the aerodynamic surface 

Aerodynamic segment-portio*; of a thin or slender bodv over which the strength of a distri- 
buted flow sirtgularitj is contralled by a single parameter, viz., an aerodynamic panel or. 
thin and slender body inean surfaces and the segment of a slender body between two 
adjacent points on the slender body centerline 

Applied forces-nodal jorces arisiLg from surface tractiotis and body forces 

Asymptotic exparkon-a semiccnvergent series the sum of whose terms represents an approx- 
imate solution to a boundary value problem 

Bound vorticity-a vorticity distribution lying in a plane parallel.to the free stream and having 
its surfice of first-order pressure discontinuity (Le-, the surface across which the velocity 
component in the free stream direction is discontinuous) fixed to an aerodynamic mean 
surface of a thin or slender body 

Body Axis System (XB? YB,ZB)-a right-handed, rectangular Cartesian coordinate system 
constituting a iiieaii reference fratire and having its origin at the aircraft center of mass; 
the XB ZB plane coincident with the aircrztc plane of symmetry; and the X g  axis posi- 
tive forward, into, and parallel t:~ the free stream 

Body-fixed axis system-a mean refercrrrce jrarne 

Constsnt pressure panel-an aerodynaniic panel hav.ing a uniform distribution of bocciid 
vorticity 

Constrained flexibility matrix-flexibility matrix for a structure constrained from rigid body 
displaceniri; t - 

*!taii~ized t a m s  arc also defincd i n  this gloss;iry. 



Control effectiveness-coefficients in linear relations between aerodynamic forces and small 
changes to control surface deflection angies 

Control point-point (on the aerodynamic mean surface of a thin or slender body or on the 
surface of revolution representing the surface of a slender body) where an aerodynamic 
bandary condition is satisfied 

Coordinated maneuver-arb aircraft maneuver during which the bank angle is always such that 
the totai acceleration vector (Le., the sum of the acceleration dtiz to gravity and of the 
acceleration due to flight path curvature) ties in the plane of aircraft symmetry 

Cross flow-the component of flow in the plane normal to the free stream 2nd in the region 
about a slender body 

Cylindrical surface-a surface generated by movin_g a stright line parallel tG Itself dong a 
curve that is not necessarily closed 

Design point-the steady, reference flighf condition selected as the design point flight condi- 
tion (Le., the flight condition whose aerodynamic loads are used to determine the jig 
shqw of an aircraft) 

Design point shape-the aerodynamic shape of m aircraft in the design poinf flight condition 

Displacement relation-function describing the elastic displacement fieM interior to the 
boundaries of a structural mire element in terms of components of displacement at the 
node points of the finite element 

Dispiscement vector-position of a material point in a deformed structure relative to its 
position in the structure before deformation 

Elastic axis-the IOCUS of p.;ints along a beam-like structure along which there is ‘10 extension 
&ing from Sending (i-e-, the neutral axis in the Bernoulli-Euler law) and along which 
the centers of twist occur in torsion 

Elastic displacement vector - -~f ; .~ i~!~J~~i~i t ’ i t  I recror obiained by evaluating a displacement 
field satisfying (lis I ,  ‘wi rcjiwirce frmie constraint conditions 

Cyuivalent nodal forics-iorces at structural firzire element node poirirs which perform work 
on th.: node point displacerncnts equal to the work performed by forces distributed over 
the bite elements, viz., the finite element surface integral of one-half the scalar product 
of the distributed forces with the displaceincnt rerations 

Finite element--geometric segments of a structure, lying between imaginary lines or planes 
intersccting at points called nodc points. whose structmal properties are expressed in 
terms of forces and displacements at the node points 



Flow singularity-a function describing a perturbation velocity field about a tine or  plane (Le., 
a somv or  doublet distribution on a tine or a source or vorticity distribution on  a plane) 
and having a mathematics1 singumty at the tine or plane 

Flow incidence-the small angle through which a uniform free stream must be turned for the 
flow to become tangent to an aerodynamic surface 

Fluid Axis System (x, y. 2)-an inertial reference frame for aerodynamics coincident with the 
Reference Axis System at  any instant of time under consideraticn and having a constmt 
translational velocity reldive to the Iizerthzl Asis Svstem equal to the present velocity of 
the Reference Axis System along its X axis 

Free flexibility matrix-the flexibility matrix for a structure free of kinematic constraints 
(viz., such tnat sets of applied forces are in selfequilibriicm) 

Generalized (modal) coordinates-the amplitudes of deflection of the free vibration mode 
shapes of a structure 

Induction problem-the aerodjwamic prvblein whose solution determines the lifting pressure 
. induced by an arbitrary interference flow 

Inertial Axii System (X', Y', Z ' k a  right-handed, rectangular Cartesian coordinate system fiied 
relative to an assumed flat, non-accelerating earth and taken as a reference frame for 
structural and rigid body dynamics 

Inertially equivalent lumped mases-point masses, rigidiy constrained to structural node 
points. whost kinetic energy. arising from r d e  point velocity. is equal to the kinetic 
energy e f  the distributed m a s  of adjacent finite eleinenrs when the distributed mass has 
a velocity determined by the finite element displucenteitr relotiorzs 

Interference body (surface)-a closed cylindrical surfpce with generators parallel to the free 
stream, surrounding at least a portion of the length of 3 sleirder bodv and whose cross 
section is a mean of the cross section of the slender body portion lying between its ends; 
a cylindrical surface approximating the surface of a slender body over that portion of 
its length where interference flows are required to satisfy the sitrface botmdary corrdirioir 

Interference effects-the pressure distribution conputed in the aerodynamic itzdrrcrioir 
pro blent 

Jig shape-the aircraft shape obtained when the design point shape is elastically deformed by 
removing the aerodynamic, inertial, and propulsion system loads of the design poiitr 
flight Londition 

Junction point -tiode poiiits whcrc tlic dastic asis of tliiii and s,'crtder bodics are joined to one 
another in forming the elastic 3 ~ s  of a multiple thin and/or slender body configuration 

Lateraldirection derivatives -uerodyiiamic or stubility derivatives related 10 purely antisym- 
metric motion or ail aircraft 
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Leading edge correction-streamwise component of aerodynamic force a t  the leading edge of a 
thin M y  required to c o m t  the inviscid drag computed from the solution to the a e r e  
dynamic lifiing pmblem 

Lifting problem-the aerodynamic problem whose solution determines the lifting pressure 
distribu!ion on a thin or slender bod-v isolated in a uniform flow 

Local axis system-a right-handed, rectangular cartedan coordinate system related to the 
Reference Axis System by an orthogonal transformation chosen so as to simplify the 
analytical description of the d a c e  geometry and structural properties of  thin and 
slender bodies 

Longitudinal derivatives-uerotfynutnic and sfabaify derivatives related to purely symmetric 
motion of an aircraft 

Low frsquency approximation-an approximate theory of unsteady aerodynamics valid when 
the unsteadiness is a slow time variation, viz., us teadines  characterized by reduced 
fiequc;tcies small by comparison with unity 

Mean interference surface of a slender body-see iiiterfeence bodj7 

Mean reference frame-a coordinate system translating and rotating with an elastically deform- 
ing aircraft in such a way that the momentum of the aircraft a t  any instant of time is 
equal to the momentum of a rigid aircraft translating and rotating with the coordinate 
system; also, a moving coordinate system relative to which the kinetic energy of the air- 
craft is a minimum; the Refereiice, Body and Sfabilify Axis Systems are mean reference 
frames 

- 
Mean surfaces-cylin~cal surfaces aligned with the undisturbed free stream where the surface 

boun&y conditions are specified in a linear, fmt-order aerodynamic theory 

Mean wake surface-a cylindrical surface aligned with the undisturbed free stream where the 
wake boundary conditions an: specified in the linear, fmt-order aerodynamic theory 

Motion variables-a set of timedependent variables which describe the motion of an aircraft 
relative to the Inerfial Axis System. viz., the translation and mtation of the m e m  refer- 
ence frame relative to the Inertial Axis System plus the elastic deformation motion rela- 
tive to the mean reference frame 

Net loads-sum of the iioddforces due to srtrfuce rrucrioris and inertial body forces 

Nodal displacement components-in a fitijre elemerir rcpresentation of a structure, the compe 
nents of translational and/or rotational displacement at the riode poiiris which. when 
substituted into the displue~er~rc~nr relufions, describe the deformation at all points of 
the structure 

Nodal force compcner:ts-in a fitiifc c~lcnte~irr representation of a structure, the components of 
force and/or momcnt applicd iit the risde poinrs 



Nodal T ass matrix-matrix of inertidly equivalent lumped tmes,  i.e., the matrix of mass 
cli, sntities associated with the node points. in a finite element structural representation, 
n 'ich, when multiplied onto time rates of change of nodal disphcement components 
' d b e s  the momentum of the crtructure 

Ncdc .soints--points where the applied forces and disp1acem:nts are evaluated in thefutite 

Pawl ccntroid+erodynamic centroid; also, panel geometric centroid and in volume II- 

h u .  : coefficient-the deviation of the local pressure from static free stream pressure nor- 

Quadratic spline-a function of the X coordinate defined over three adjacent segments of the 

dement representation of a structure 

' ai rocenfroid 

n , & d  with respect to the dynamic pressure of the free stream 

X axis (viz., X1 to X,. X-, to X3. and X3 to X4) varying smoothly and quadratically from 
zt m value and slope at X-= X1 to a maximum value and zem slope at Xq < X < X3, 
and zero value and slope at X = X4; functional description of the line doublet distribu- 
.tiom on sletider body centerlines used in constructiR3 the solutions to the subsonic 
slender body aerodynamic lifti!ig problem of the FLEYSTAB system 

Quasisteady maneuver-an unsteady maneuver in which the - nsteadiness (Le-, the time rates 
of change of the translatiorid and rotational velocities) is so small that time derivatives 
can be treated as negligiblv small in the equations of motior. 

Re-luad frequency-the frequency of a harmonic time dependence. w, normalized with 
respct to the f y i e n c y  with which an aircraft traverses the spatid distance, 1. between 
th B point whub a cause of unsteadiness is Iocated and the point where its effect is signifi- 
ca i t  to the problem, i.c.. k = o l / U  where for a wing alone undergoing pitch osciilatibns 
I is taken to be the mean wing chord 

Reference .his System (X, Y. Z)-a right-handed, rectangular Cartesian coordinate system 
constituting a mean refereme frame and having its origin located on the aircraft plane of 
synmetry, the X,Z plmc coincident with the aircraft plam dsymmetry, and the X axis 
positiw aft d i g  :d 4 t h  the undisturbed free stream 

Reference flight '. - idition (sate)-the steady, trimmed flight condition in which the static 
nnd dynP IC stability of an aircraft is evaluated by the FLEXSTAB system 

Referenc- junction point-one of the two juitcrion poitits at the ends of the elastic aris of 
c bch thin and slender body used to describe the elastic axis oi a ultiple thin and slender 
body structural arransement 

Residual f:exibility-tbe structural flexibility associated with free vibration mode shapes for 
which the gr.rmlited inertial and damping forces are negligibly small in the perturbation 
equation: d motion 

Rigid 5ody mode shapes-displacement components, at points on an aircraft surface or at 
structural node poitits, arising from an inlinitesi!nally sniatl rigid body displacement 
which is either 3 rotation and trmsl.ition of an aircraft at  the center of mass or a 
displacement in terms of the constraincd structural degrees of freedom 
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Self-equdibrium-term refelring to a system of forces having vanishing resultant forces and 
couples at any poiilt, e.&, the system of aerodynamic, propulsion system, and inertial 
forces acting on an aircraft in free flight 

Singularity strength-parameters controlling the strengths c fflow simu&rity distributions on 
aerodynamic segments 

Slender body-an aircraft configuration component having an aspect ratlo equal in order of 
magnitude to its thickness ratio, e+, fuselages, nacelles, pods, tip tanks, etc. 

Stability Axis System (&, Y,, &)-a right-handed, rectangular artesian coordinate system 
constituting a mem reference fmme and having its origin located on the aircraft plane of 
symmetry, the X& plane coincident with the plane of symmetry, and the X, axis posi- 
tive forward aligned with the free stream in the reference flight condition 

Stabilitjj derivatives-constants of proportionality between aerodynamics forces and small 
changes of aircraft motioii variables and trim parameters from their values in the 
reference flight condition 

Steady, reference flight condition-see reference flight condition 

Stnctural nodes-see node points 

Struztural reference frame-coordinate system used in deriving the structural theory 

Subsonic edge-edge of a thin body having a sweep angle gr,ziter than the Mach cone angle of a 
supersonic free stream €!ow 

Supersonic edge-edge of a thin b d y  having a sweep angle less than the Mach cone angle of a 
supersonic free stream 

Surface boundary condition-boundw condition on an aerodynamic problem requiring that 
the disturbed flow be tangent to the aerodynamic surface, neither penetratine it nor sepa- 
rating from it 

Surface tractions-stresses applied to the external surface of a structure 

Thickness problem-the uerodynumic problem whose soh tion determines the pressure distri- 
bution on a thin or slender body, the body having no camber or incidence and having 
only a symmetric thickness shape 

Thin body-an aircr art configuration component having an aspect ratio at least an order of 
magnitude grcater than its thickness ratio, e.g., wiiigs, tail surfaces, suufs, etc. 

Total nodal forces-mdal forces that are in equilibrium w i t h  the uppli~:!forces and the 
stresses at  firtitt  dement boundaries 

Trim parameters-all quantities appearing in thc steady equations o.'motion which, for a 
particular aircraft, must have specified valucs in order for the equations of motion to be 
satisfied, i.e., velocity, rotation rite. control surfxe scttings, bank angle, attitude, and 
thrust setting 



Trim variables-six of the him parameters which may be determined by solving the steady 
equations of motion treating thes six parameters as unknowns 

Trim solution-the values of the trim variables determined by solving the steady equations of 
motion 

Wmg-body problem-aemdynamic pn?blem consisting of a wing-body combination used in the 
asymptotic expansion leading to the fust-order approximate aeradynamic theory of the 
FLEXSTAB system 



APPENDIX A 

SYMBOLS 

a: speedofsound 

aR( XN 1 : thickness shape of slender body, figme 3.2-5 and equation (3.2-1 7) 

(-1 flow incidence induced at p o b t  (X, Y, 2) by unit now singu- 
Mty of type (-) located at ( ), section 3.4 a( 1 (xsy'z) ' 

(-1 
a ( -1 , ( 1 : flow incidence induced at  control point (-) by unit flow 

singulaity of type (-) located at  ( ), section 3.4 

[ AIC] : aerodynamic inhence  coefficient matrix, equation (3.4168) 

AR: aspect ratio, section 3.2.8 

intermediate form of aerodynamic influence coefficient matrix, 
equation (3.4218; 

intermediate form of unsteady aerodynamic influence coefficient 
E6A1: matrix, equation (3.4-218) 

1 : steady aerodynamic influence coefficient matrix, 
equation (3.5-41) and section 3.5.2 

[A,,J : steady aerodynamic matrix, equation (5.3-3) 

i 6~~~ 3 : unsteady aerodynamic influence Coefficient matrix, 
equation (3.5-41 j and section 3.5.2 

3 : matrix of integrated aerodynamic influence coefficirnts at 
control points (s-) induced by vorticity distribution located zt 
( ), section 3.4.8 

C JaV ( - . I , (  I 



[Ai 1 : rigid body aerodynamic force matrix, equation (6.24) and 
section 6.3.3 

[ai] : generalized aerodynamic force matrix, equation (6.2-5) and 
section 6.3.3 

b: wingspan 

bG(XM) : camber shape of slender body, figure! 3.2-5 and equation (3.2-1 5 )  

{ e )  : a 
point, equation (4.2-28) 

ix of small displaccrrc:?t components of i n  arbitrary 

matrix of velocity components of an arbitrary point dative to 
Inertial Axis System, equation (4.2-16) ' 

[ BSC,] : matrix relaiea ic isdated slender body aerodynamic thickness, 
equarion (3.4-?7) 

- 
c :  referenw chord length selected by user 

CD: drat; coefficient, section 5. I 

c -  i' c h i 3  length at inboard edge c i  panel, figure 3.4-5 

- 
c panel chord length along panel row geometric centroid, 

equation (3 .4 '  5;  
i' 

cI < XM) : camber shape of slender bod) figure 2.2-5 and equation (3.2-1 5 )  

CL: l i t t  coefficient, section 5. I 
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: rolling moment coefficient, section 5.1 

: pitching moment coefficient, section 5.1 cnl 

Cn : yawing moment coefficient, section 5.1 

: pressure coefficient, equation (3.2-8) 
cP 

( -1 .  
‘P ( 1 

pressure coefficien t induced at aerodynamic segment centroid 
( ) by flow singdlarity of type (-), section 3.3.3 

ACy : lifting pressure coefficient, equation (3.467) 

Cy : side force coefficient, section 5. I 

matrix of interference pressure coefficients induced by flow 
singularities of type (-) located at ( 

int 
), section 3.4.6.2 “;;))I : 

is0 matrix of pressure coefricients induced by thickness exclusive 
of interference (Le-, isolated thickness pressure coefficients), 
equation (3.4-1 73) 

ICp} S : 

[ C I : constrained flexibility matrix, equation (4.2-60) 

[ E  1 : unconstrained flexibility matrix, equation (4.2-64) 

I: CPM] : pressure influence coefficient matrix, eqiia tion (3 .-+-I 67) 

(-1 matrix of pressure coefficients induced at aerodynainic seg- 
ment centroids ( A )  by unit flow singularities oC rype (-) 
located at ( 

CCPM(,),( ) I :  
), equation (3.4-37) 

-.. uncofistrained residual flexibilit: matrix, equations (4.2-3 I )  
and (4.2-83) cc,1: 
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- unconstrained flexibility matrix in terms of aerodynamic 
surface segment rotations and gyroscopic couples, equation (5.3-1) “eG : 

unconstrained flexibility matrix in terms of aerodynamic sur- 
face segment rotations and forces, equation (5.3-1) 

-, 
CCeTl: 

- 
c cdG 3 : unconstrained flexibility matrix in terms of aerodynamic surface 

segment translations and gyroscopic couples, equation (5.7-1 4)  

unconstrained flexibility matrix in terms of aerodynamic surface 
segment translations and forces, equation (5.7-14) 

-. 
CCdTl: 

- residual flexibility matrix in terms of aerodynamic surface segment 
rotations and gyroscopic couples, equation (6.343) ;5& : 

reddual flexibility matrix in terms of aerodynamic surface segment 
rotations and forces, equation (6.3-2) 

- 
c%fj‘$’ 

d : elastic displacement vector, equation (2.3-14) and figure 2.3-3 

components of elastic displacement vector evaluated interior to ath 
: finite element, equation (4.2-5) 

f d* 1 : translational deforma!ion.matrix, equation (4.2-98) 

{ D} : leading edge correction forces, equation (3.4-224) and 
section 3.5.3.3 

increment leading edge correction force from angle of attack, 
section 3.5.3.3 {ADJ : 

increment k d i i g  edge correction force from angle of sideslip, 
‘ADB’ ’ scciion 3.5.3.3 

increment leading edge correction force from roll rate, 
{ADP’ ’ section 3.5.3.3 

incremeilt leading edge correction force from pitch rate, 
section 3.5.3.3   AD^): 
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increment leading edge correction forcc from yaw rate, 
: section 3.5.3.3 

transformation matrix-Body Axis System components t o  Stability 
Axis System components, equations (6.4-73) and (6.4-74) 

transformation matrix-Stability Axis System components to 
Reference Axis Systeni components, equations (6.5-1 1) and (6.5-12) 

CDFR] : 

[ D p e l  : ieading edge correction matrix, equation (3.5-71) 

[El  : aeroelastic matrix, equation (5.3-5) 

roS” I : incremental aeroelastic operator matrix, equation (5.3-32) 

X-coordinate of aerodynamic pressure evaluation matrix, 
equation (3.4-2 10) f D X 3  : 

normalized thickness shape of Ith thin body, section 3.2.4.2 
and equation (3.4-14) FI(XI,YI): 

?A. C ’  
total aerodynamic force at aircraft center of mass, 
cqua tion (3.5- 1 ) 

A i F c I :  
matrix of total aerodynamic force and couple components at 
aircraft center of mass expanded on Reference Axis System, 
equation (3.5-6) 

T {Fc] : m;itrix of thrust force and couple components a t  aircraft center 
of iiiass expinded on Keferencc Axi. System, equation (6.2-10) 

A matrix of total aerodymmic force and couple components at air- 
craf: center of mass expandcd on Body Axis System. equation (5.3-1 1 

{FBI  : 
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r matrix of gyroscopic force and couple components at aircraft 
zenter of mass expanded on Body Axis System, equation (5.4-21) IF;: : 

matrix of propulsion system force anc couple components at 
aircraft center of mass expanded on Body Axis System, equa- 
tion (5.4-22) 

{FBI: T 

. -  matrix of aerodynamic force normal components at centrsius 
of aerodynamic segments, equation (3.5-38) 

(FA} : 

matiix of aerodynamic force wmponents at aerodynamic 
mcnt centroids expanded on Rettrence Axis System, 
equation (3.5-29) 

{ f A I  : 

A matrix of aerodynamic force comronents at aerodynamic seg- 
ment centroids expanded on locaI axis systems, equation (3.5-39) If,): 

A is0 matrix of aimdynamic force components induced by thickness 
If,) : but not including thickness interference forces, equation (5.3-8) 

int matrix of interference aerodynamic force components induced 
by thickness, equation (5.3-8) 

aerodynamic force at ith Uth, panel of Ith thin body (Jth 
slender body), equations (3.57) and (3.5-20) 

FA P A  W I i '  B J j '  

;: gravitational acceleration vectcr, equation (4.2-2) 

G(XM): normalized camber shape of Mth slendcr t.,dy, figure 3.2-5 

c G F l :  rigd-body aerodynamic force transformation matrix, 
t quation (5.3-13) 

CG,]: rigid-body aerodynamic force transforma tion matrix, 
equation (5.3-13) 



cs, 1 : sum of [ G ~ E ]  and [GoR]:  equations (5.3-13j and (5.3-31) 

EGO,]: incremental aeroe.&ic operator, equa:ion (5.3-32) 

CS,,l: rigid aircraft aerodynamic force operator, equation (5.3-23) 

residual flexibility aeroelastic operator, equation (6.3-28) c%€lE’ : 

c s  ‘dR1: rigid-body, unsteady aeradynamic force operator, 
equation (6.3-21) 

residual flexibility, unsteady ae-oelastic operator, 
equation (6.3-29) [d%,,l: 

[ G I  : propulsion system gyrcsccpic co!iple matrix, equation (6.2-23) 

CG3 : propulsion system gyroscopic couple matrix, equation (6.2-24) 

[€(#I 1 : propulsioil system gyrosco2k couple matrix, equation (6.2-28) 

[ER 1 : propulsion system gyroscopic couple matrix, equation (6.2-33) 

[ GE 1 : propulsion system gyroscopic couple matrix, equation (6.4-3) 

[EE 1 ; propulsion system gyroscopic couple matrix, equation (6.4-3) 

propulsiun systc. gyroscopic couple i.:xtrix for variablc m o r  
spin rate, cquation (5.4-16) 

[GI a G  : 



HI (XI , YI : normalizeC - a b e r  shape of Ith t l in body, section 3.2.4.2 

[HJ : equations of motion coetfic.iel;t matrix, equation (6.44) 

[HT] : generalized aerodynamic force transformation matrix, 
equation (6.3-1 7) 

[HeR1 - generalized aerodynamic force operator, equation (6.3-1 7) 

[ HR ] : residual flexibmty aeroelastic, generalized aerodynamic force 
eE operator, eqwtion (6.3-3 1 ) 

[ 6~~~ J : rigid-body, unsteady aerodynamic farce operator, 
eqwticn (6.3-24) 

6HR 1 : residual flexibility aeroelastic, generalized, unsteady a e r e  
dynamic force operator, equation (6.3-32) BE 

- f i n  

i 3 j 9 k : unit base vzctors of Reference A x i s  System 

A n n  
. C . .  -, ke : unit base vectors of Inertial Axis System 

n n n  

j.B j ¶kg : unit base vectors of Body Axis System 

Ixx In Izz Ixz : moments and product of inertia of total aircrafL expanded on 
Body Axis Systm,  equation (2.3-13) 

[IDM] : integrated flow incidence matrix, equation (3.4-222) 

[ IscB : reduced integrdted flow incidence coefficient matrix, 
equation (3.4-223) 

[IS(+, 1 : integrated flow incidence coefficient matrix, cquaticn (3.4223) 
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c INT 1 : tmqsftxmation of slender body interference surface pressures 
to aerodynamic forces on slender body centerlines, 
equation (3.5-35) 

k: reduced frequency, equation ( 3 . 2 4 )  

K: - kinetic energy, equation (4.2-i) 

Krel : kinetic energy apparent to observer in Body Axis System, 
equation (2.3-8) 

K(-) : kernel function for a unit flow singularity of type (-), 
section 3.4 

[ K] : reduced amgosite stiffness matrix, equations (4.2-14) anh 
(4.2-58) 

ekJ : generalized stiffiiess matrix, equation (4.2-76) 

[el : stiftness matrix for a* structural finite elemel-., equation (4.2-9) 

[ K~ 3 : nonsingular stiffness matrix, equation (4.2-58) 

[ LSC] : aerodynamic influence coefficient i:lstrix, eqJation (3.4-1 70) 

[ 6LSCI : unsteady aerodynamic ineuence coefficient matrix, 
equation (3.4-21 6) 

ig: gust wave length, section 6.5.3.2 

L ( N i  1 : length of ith elastic axis scgmznt on Nth body, equation (4.3-1) 

A L c N i )  : length of elastic axis finite element, eqLdtion (4.3-1) 



-LBJ: length of Jth dender body centerline, equation (3.4-3) 

: length of jth segment of Jfh slender body centeriine, equation 
(3.4-3) L ~ ~ j  

m( 5, i, qIi) ; source distribution stmwth, equation (3.4-1 5 )  

[me]: reduced nodal m a s  matrix, equation (4.3-1 5 5 )  

[ ms J : mass matrix, equation (4.2-20) and section 4.3.7 

a [ma 1 : nodal mass matrix for ath frnite strucium~ element, equation 
(42-1 8)  

bJ : generalized mass mstrix, equation (4.2-79) 

M: total mass of aircraft, equation (3.3-10) 

M: Mach number apparent to Reference Asis System, equation (2.3-75) 

14-: Mach number apparent to Fluid Axis System. equation (2.3-74) 

: total aerodynamic couple at aircraft center of mass, 
equation (3.5-2) 

[MI : total mass-inertia matrix, equation (4.2-26) 

{ M' 1 : propulsion sjstnm gyroscopic couple components, equations 
(4.2-1 19j and !4.3-1 17) 

cMM11: inertia nu trix, equation (0.2-30) 

[ M M p  1 : gravity matrix, equation (6.2-32) 
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+ n: unit vector normal to surface, equation (2.3-32) 

$i : unit vector normal to surface before elastic deformation, 
equation (2.3-50) 

[ Na] : matrix of displacement functions for a* stiuctural finite 
elemer.t, equation (4.2-5) 

[ NAF] : thrust force transformation, equation (4.2-1 17) and 
section 4.3.6 

{NP)  : thrust force coefficient matrix, equation (5.44) 

p : perturbation roll rate, section 2.3.2.5 and equation (6.2-7) 

-<  P : roll rate, equation (2.2-3) 

A 

p : nondimensional roll rate, equation (2.3-67) 

[ p] : structural mas  transfcrmation matrix, equations (4.2-53) and 
(4.2-63) 

c Fd] : structural transformation matrix-fror nodal displacement 
components to aerodynamic control point translations, 
equation (4.2-100) and sections 4.3.5 and 4.4.2.3 

PT 1 : structural transformation matrix-from aerodynamic segment 
forces to structural node forces, equation (4.2-1 14) and 
sections 4.3.5 ar,d 4.4.3 

[ Pe 1 : structural transformation matrix-from nodal displacement 
components to aerodynamic coEti-al point rotations, 
equation (4.2-101) and sections 4.3.5 and 4.4.2.3 

: perturbation pitch rate, section 2.3.2.5 and equation (6.2-?) 
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- 
q: dynamic pressure apparent to Reference Axis System, equa- 

tion (2.3-75) 

- 
a j :  dynamic pressure apparent to FI-lid Axis Systc ‘11, equation (2.3-74) 

{ 9) : mstriu of perturbation motion variable: sectton 6.4.1 

r<J : dynamic pressure distribution, equations (3.5-54) and (3.5-55) 

Q : pitch rate, equation (2.2-3) 

n 

Q : nondimensional pitch r&, equation (2.3-67) 

-d: fluid velocity relative to Fluid Axis System, equation (2.2-4) 

matrix of nodal iorce compon:nts applied to complete 
structure, equation (4.2-1 3) Q 1 : 

Q“) matrix of nodal force components of afh finite structural 
element, equation (4.2-8) 

QA) : matrix of aerodynamic force components at structural nodes, 
equations (4.2-1 16) and (6.2-3) 

{Q’} : matrix of gyroscopic f o r e  cornponents at strrlctural nodes, 
equations (4.2-1 19) and (6.2-3) 

matrix of nodal farce components at structural constraint 
nodes, equation (4.2-59) {Q& -. 

matrix of nodal force components applied by surface tractions, 
‘ Q s }  : equation (4.2-41) 

matrix of generalized forces conjugate with the free vibration 
mode detlection amplitudes, equation ((>.:-SI ‘Q1’ : 



i Q ~ I  : matrix of thrust force components at structura~ nodes, 
equations (4-2-1 19) and (6.2-3) 

r : perturbation yaw rate, equations (2.3-26) and (6.2-7) 

r(X,)  : slender body th ichea  &ape, equation (3.2-17) 

+ r : position relative to aircraft center of mass, figure 2.3-3 

;a : position relative to Inertial Axis System, fwc 2.3-1 
- - 

+ ra: paition of aircraft center of miis relative to Inertiai P;cis 
0 System, figure 2.3-3 

* r o  position, before deformation, relative to aircraft center of mass, 
equation (2.3-14) and figure 2.3-3 

1 : perturbation orientation matrix, equation (6.2-29) 

R : yaw rate, equation (2.2-3) 

n 

R: nondimensional yaw rate, equation (2.367) 

3 : pcsition of aircraft center of mass relative to origin of 
Reference Axis System, equation (2.3-1 1) 

S: surface 

th Sa: surface of a structural finite element, section 4.2.2.1 

c aB: total mean surface of slender bodies, figure 3.3-1 and 
equation (3.3-10) 
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: mean surface of Ith slender body, equation (3.3-10) 
. 'BJ 

SBJ : surface area of j th panel of J th slender body mean surface, 
section 3.4.1 

sw: total mean siirface of thin bodies, figure 3.3-1 and equation 
(3.3-91 

; mean surface of I* tlun body, equition (3.3-9) swI 

- 
%Ii* surface m a  of i* pancl of I* thin body mean surface 

section 3.4.1 

(- ) . strength of flow singuhity of type (-) located at ( ), 
s< ) '  section3.4 

( - 1 . matrix of flow singularity strengths of type (-) Iocated at ( ), 
section 3.4 

{S( ) . 

CJJ : coordinate transfornution matrix-from Reference Axis 
System to Body Axis *stem, equation (3.5-75) 

transfomiation matrix-Stability 'Axis System to Body Axis System, 
CsDJ: equations (5.34) anct (5.345) 

{ T 1 : matrix of thrust forces, equations (4.2-1 19) and 4.3-1 22) 

[ T] : coordinatc transi'ormation matrix-from Body Axis System to 
Inertial Axis System, equatim (2.2-1) 

[: T f T  1 : aerodynamic forcz transformation matrix-from components in 
local axis systems to components in Reference Aixs System, 
equation (3.5-30) 
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[TFp] : aerodynamic pressure transformation matrix-from surfl;,c 
pressure to normal components of force, equation (3.5-33) 

[T,,] : aerodynamic force transformation matrix-fmm normal com- 
ponents of force to components in local axis systems, 
equation (3.5-32) 

[TRANSID 1 : leading edge cor -ection transformation matrix-irom leading 
edge panel forces to components in local axis systems, 
eq.iation (3.5-40) 

[TRANSt J : aerodynamic force transformation matrix-from thickness- 
induced pressures to force components in local axis systems, 
equation (3.5-3 1) 

u v w : components of nondimensional perturbation flow veiocity rela- 
tive to and expandcd on Reference Axis System, equation (2.3-35) 

u v w : components of aircraft perturbation translational velocity rela- 
tive to  Inertia1 Axis System but eupandeu on Body Axis System, 
equation (6.2-7) 

(-1 ( -) -1 components of nondimensional perturbation flow velocity 
‘( yv( ( : induced by flow singularity of type (-) located at  ( ), 

section 3.4 

gust flow velocity relative to Inertial Axis System but components u ,v ,w - 
g g g . expanded on Body Axis System, equation (6.5-24) 

gust flow velocity relative to Inertial Axis System but components U’,V*,W* 
g g g - expanded on Inertial Axis System, equation (6.5-24) 

ui : deflection amplitude of ith free vibration mode shape, 
equation (2.3-64) 

{ } : matrix of deflection amplitudes of free vibration mode shapes 
treated as independent degrees of freedom, equation (4.2-63) 

{u, 1 : subset of ( u ) ,  section 4.2.4.3 
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U: finear approximation to strain clergy,  equation (4.2-1 5 )  

LT' : exact strain energy, eqilitian (4.2-1) 

u v , w : aircraft trana 'ation velocity relati e t.J the Inertial Axis System 
but compordiits expanded on Body Axis System, equation (2.2-3) 

+. v . nondimensiond perturbation vcloci:> of fluid relative to Fluid 
Axis Sysiciii, equation (2.3-35) 

v. : component of fluid nondimensional perturbation velocity (J> 
along normal t c  surface. equation (2.3-37) r; 

n n  

y : amplitudes of xurface velocity modes, equation (2.3-70) 

'v , 'w(' : integrated nondimensional perturbation flow velocities, 
induced by vorticity distc.bution located at  ( ), section 3.4 

Va : voiume of at'' finite structural element, section 4.2.2.1 

+ 
1' : fluid velocity relative to Reference and Body Axis Systems, 

equation (2.24) 

-+ 

Vc : aircraft translational velocity relative to Inertial Axis Systcm, 
equation (2.7-3) 

-+ 
: velocity of Body Axis System relative to Fluid .4xis System, 

equation (2.2-5) lJ R 

qs : surface velocity relative to Fluid Axis System, equation 
(2.3-38) 

3 components of surface velocity ( V  ) relative to Fluid Axis System, 
equation (2.3-70) 

* A 

"xVp d ~ , ~  
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.€VI perturbation velocity matrix, equation (6.24) 
P' 

w wake surface, figure 3.3-1 

W: work, section 4 

x , y , z : Fhuid Axis System coordinates, section 2.2.3 

X , Y , Z : Reference Axis System coordinates, section 2.2.4 
- - -  
X ,Y, Z : Reference A x i s  System coordkates of point relative to aircraft 

centpi of mass, equation (2.3-61)) 

" . - _  
X , Y , Z : Lagrangian coordinates in Reference Axis System, 

equation (2.3-3) 

x ; y ; z * Inertial Axis System coordinates, section 2.2.1 

- - . #  

X;Y; Z : : Lagrangian coordinates in Inertial Axis System, equation 
(2.3-1) 

xB, yB zR : Body Axis System coordinates, szction 2.2.2 

t r  Reference Axis System coordinates of aircraft center of mass, 
xcg¶Acg "cg: figure 2.2-2 

%,YE¶%: ESIC Reference Axis System coordinates, figure 4.4-9 

XM YM ,ZH: Mth local slender body aerodynamic axis system, figure 3.2-5 

XN YN 9 ZN : Nth local thin body aerodynamic axis system, figure 3.2-4 

xN ( 0 9 yN ( 3 5 ZN ( 0 : Reference Axis System coordinates of origin of Nth local axis 
system, figure 3.2-3 

x, yys y z ,  : Stability Axis System coordinatcs, figure 2.24 
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xNi ,yNi, zNi: local elastic axk coordinate system of ith elastic axis segment 
of N* body, figure 4.3-5 

xEn,yEn,zEn: ESlC local thin body axis system, figure 4.4-9 

XIi(0) ,YIi( 0) ,zri( 0) : Reference Axis System coordinatesof originofithpanel locat 
axis system, equation (3.4-4) 

Greek 

-1 W a E tan i~ : angle of attack, equations (2.348) and (5.2-9) 

-' - angle u.':Yeslip, equations (2 .348)  and (5.2-9) 8 5 tan 

8' E 1-M' : compressibility factor 

is' 

y : flight path angle, section 5.2.1 

y ( SIi, rtI 1 : vorticity distribution on ith panel of Ith body, equation (3.4-5 1) 

: a;?,ele of sweep of ith elastic axis segment of Nth thin body, 
r N i  figure 4.3-5 

6 : first variatlon operator 

'a : aileron deflection angie, equation (2.3-53) 

6 e ' elevator deflection angle, equation (2.3-53) 

: rudder deflection angle, equation (2.3-53) % 
4 

: control surface deflection angle, equation (2.3-50) 6, 
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{ & } : matrix of nodal displacement cotrponents for free, complete 
structure, equation (4.2-1 2) and section 4.2.2.2 

6 1 : matrix of nodal displacement components for constrained, 
complete structure, equations (4.2-30) and (4.2-77) and sec- 
tion 4.2.2.2 

matrix of nodal displacement components for a* finite ’ structural element, equation (4.2-5) 

{ E }  : elastic axis nodal displacement components, equation (4.3-97) 

subset of elastic axis nodal displacement components, equa: 
{a*’ : tion (4.3-97) 

subset of elastic axis nodal displacement components, equa-. 
tion (4.3-97) c6T’ : 

5 subset of elastic axis nodal displacement components, equa- 
tion (4.3-97) : 

* subset of elastic axis nodal displacement components, equa- 
tion (4.3-97) : 

components of nodal displacement at pth jmction point, equa- 
tion (4.3-45) 

{sp1 : 

* 
{6,,}: subset of { 6p ), equation (4.345) 

{ sR): m a d u  of structural constraint nodal displacement components, 
equation \4.2-S9) 

c AGI : gyroscopic couple transformation matrix, equatiaa (4.2-1 19) 

ith aerodynamic perturbation parameter, equation (3.2-1 0) Ei: 

8 : pitch attitude, section 2.2.2 
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E: nondimensionalizing camber ratio for thin bo:::, section 3.2.3, 
equation (3.2-1 2) 

h 

e : camber ratio amplitude, equation (3.2-2 1 ) 

e ~ :  dihedral angle of mean surface of .qth thin body, figure 3.2-3 

8 I : Dihedral angle of ith panel of ith body, figure 3.4-3 

5 . E -  
elastic rotation at a point, equation (2.3-50) 

€ e * 1 : matrix of elastic rotations at control points, equations (3.5-44) 
and (4.2-99) 

{eG) elastic rotation of Frooulsion system rotors, equation (4.2-1 18) 

X : time function whose value and th: -.dues of its derivatives have 
order of magnitude unity for all tim;: and govern perturbation 
parameter ( ), section 3.2.5, equation (3.2-21) 

{ } : matrix of Lagrange multipliers, equation (4.2-42) 

IJ : cylindrical coordinate of slender surface point, figure 3.2-5 

- . (  ID 
$ S S J ~  : doubiet distributior. on jth segment of Jth slender body 

- a  
centerline with axis in the ( ) direction, section 3.3 

5 9 r l 9  5 : variables of integration in Reference Axis System 

E I i Y r l i i Y G ~ i :  local coordinates of ith panel of Ith thin body, figdre 3.4-3 

<,j 3 r\ jj 9 5 Jj : local coordinates of j f h  intcrfcrencc SLirfaCC panei, fi w e  3.4-5; 
also, local coardinates of j t h  ccntcrline segment of ,' slender 
body, figure 3.4-4 

P ' h i d  mass density., section 3 
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: aircraft material mass density, sections 2 and 4 PA 

: thicknes ratio of thirl body, equation (3.2-1 2) 

4 : zngle of bank, section 2.2.2 

. 
4i * 

ith perturbation velocity potential normalized with respeLt to 
freestream velocity and perturbation paiameter ~i and having 
order of magnitude unity, section 3.2.2 

@ : total velocity potentid, equation (2.2-5) 

(-1 . ve1ocI:y potential indvsed by flow singularity of type (-) ' ( * located at ( ), equation (3.3-1 2) 

-b 

$i : ith free ESratioa mode shape displacement field, equaiio,: (2.3-04) 

[@6 3 : complete set of free vibration mode shapes, cquation (4.2-69) 

[ $ &  3 : matrix of free vibration mode shapes treated as indepexdent 
degrees of freedcm, sertion 4.2.4.3 1 

rriatrix of free vibration mode shapes treated as deDendent de,pees C@* 3: 
2 of freedom, section 4.2.4.3 

matrix of rigid-body mode shapes in terms of structural node 
displacements, equation (4.2-2 I )  

CTS 1 : 

[$:I : matrix of rigid-body mode shpaes for ath finite structirral 
element, equation (4.2-1 7) 

: it'' node rigid body mode shapc matrix, equatiom (4.2-1 6) and 
(4.2-2 1 )  
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[T*] : matrix of rigid-body mode shapes, relative to center of mass, in 
terms of aerodynamic segrr!en&, equations (3.5.6) and (5.6-22) 

[ $1 : matrix of rigid-body mode shapes, dative to reference poin,, 
in t e rm of aerodynamic segments, equation (4.3-1 92) 

w -  i - ith c h d a r  frequency, section 3.2.2.2 

- 
wi = 
- - small parameter related to ith ci-cu!ar frequency, sectim 3.2.2.2 

-t 
: rigd-body rotation vclocity of aircraft relative to Inertial Axis 

Sysiem, eqlration (2.2-3) 

CW 1 : diagod matrk of squares of free vibrati.m natural frequencies 

Q : acceleration potential normalized with respect to freestream 
velocity, cquation (3.2-60) 

'f' : heading angle, ssction 2.2.2 

Y : angle of flow incidence, figure 2.3-4 

( - 1 . 9 ) - fiow incidence induced at control point ( ) by flow singularity 
of type (-), section 3.4 

1 : gust flow incidence, equation (6.5-25) 
g 

{ Iy } : matrix of flow incidcnces ai panel centroids and slender body 
segment coritrol points, equations (3.4-1 721, (3.532), and 
-3.543) 

ti' * 1 : mztrix of flow incidences at 311 control points, equation (3.4-168) 

{'Yc) : matrix of f low incidences arising !mm camber shape, equation 
(3.54) 
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{ yN} : matrix of flow hicidences arising from aircraft motion and 
control surface deflections, equation (3.5-45) 

{ Y a }  : matrix of flow incidence due to angle of attack, equation 
(3.545) 

t y  } : matrix of flow incidence due to sideslip, equation (3.535) 

{ yp) : matrix of flow incidence due to roll rate, equation (3.5-45) 

{ yq )  :  ma^ of fiow incidence due to pitch rate, equation (3.545) 

{ YR} : r m t r k  of flow incidence due to yaw rate, equation (3.5-45) 

Y6 e) : matrix of flow incidence due to elevator deflection, equation 
(3.545) 

{ Y a) : 

{y6r} : 

matrix of flow incidence due to aileron deflection, 
equation (3545) 

matrix of flow incidence due to rudder deflection,equation 
(3.545) 

( I 1  : referenc : flight condition value of ( ) 

( I =  . - freestream \due of ( ) 

( I p  : perturbatior.va;ueof( ) 

( 1 quantity related to it” perturbation velocity potential 

( 1 : value of ( at lower side of a surfacc, equation (3.5-9) 
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( ) : value oft 1 at upper side of a surface, equation (3.5-9) 
u .  

( B jj : value of ( ) associated with j* aerodynamic segment of J* 
slender body 

: value of ( ) associated with ifh aerodynamic segment ot I* 
thin body 

( )wxi 

( 1 B J B K ~  : value of ( ) associated with j* aerodynamic segment Lf Jth 
slender body influenced by kth aerodynamic segment of 
K* slender b ~ d y  

: value of ( associated with j* aerodynamic segment of J* 
thin body influenced by ith aerodynamic segment of I* 
thin body 

( 'WJWiji 

C ( 1 B, 3 : value of ( 1 at all slender bodies influenced by all slender 
bodies 

c ( I : value of [ ) at all thin bodies influenced by all thin bodies 

value of ( ) at all slender and thin bodies influenced by all 
slender and thin bodies '( )BW,BW~ : 
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Superscripts 

( )* : quantity rehted to aerodynamics 

( ) ' : quantity rehied to gyrcsxpic couples 

( IT : quantity rehted to thrust 

( )(I) . i'h approximation in asymptotic frequency expnsion 

* 
( 1 : complesamplitudeof( ) 

Matrix Symbols 

I 1 : columnmatrix 

L J : row matrix 

[ 1 - rectangularmatrix 

C J : diaguiiiil matrix 

1 I' : transpose matrix 

c I-' : inverse matrix 
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operators 

D( - Eulerian derivative of ( ), equation (3.2-29) D t *  

d(  : time rate of c h w  of ( j apparent to observer tixed to an inertial 
reference frame, equation (2.3-2) dt 

- 0  ' ( . time rate of change of ( ) appmnt  to an observer fixed to  a b t  
moving reference frame, equation (2.3-5) 

e 
( ) : time rate of change of ( )-a function of time done 

t ( 11 : discontinuity (or jump) of ( ) a c r m  a surface 

d (  ) : firstvariationof( ) 

* : special matrix multiply, [cl = € A }  e CB1 such that 

[C.. 1 = [A .B . .  1 ,seeAppendixB. 
1 3  1 1 3  

3: gradient operator 
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APPENDIX B 

DEFINITION OF THE CIRCLEGROSS PRODUCT MATRIX OPERATOR @ 

B. 1 INTRODUCXON 

The purpose of  this appendix is t;> define the matrix opentor  denoted by :he symbol 
‘‘0 .” This opentor  is hereinafter called the “circlexross prodnct” matrix operator. Ref- 
erence hac k e n  made to  this operator as :an ‘‘elenierrt-b?;eIecient” matrix operator: however, 
this detinkion Is oiilv appropriate for a CII .ie-cross product opent ion betwezr. two gene-I 
matrices of  order ni x n where neither ni nor n is equal to one. Th-. cin :X:GSS product 
matrix operator may bc zny one  o f  t h i  followiriz: 

I ) A row operator 

2) A columr! opextpr  

3) An element-by+Aanent or simply eletnent operator 

These three results o f  the circlecross product rnctrix operitor are defined in section B.3. 

B.2 SYMBOLS AXD DEFINI’1‘IONS 

The following synibcjk will be used throughout this appendix: 

{ } denotes the culumn vector - : is.,  the specific case o f  a general matrix v i tk  m 
m s l  rows and only one column 

L -A denotes the row vector : Le., the specific case of a general matrix with only 
1 s n one row but n columns 

[ ] denotes the general matrix - wliiA hac i- rows and n columns 
ni x n 

Conforinability 

Consider the fundamental definition of matiis multiplication 

where the product [ C 1 exists i f  and odp  if the matrices I A 1 and [ I3 1 are conformable. 
Matrices [ A 1 and [ B 1 are said to  be conli,rniable for inultiplication when the column 
siz.: of the premultiplier, [ A I ,  is equal t o  the row size of the postmultiplicr, [ B 1 .  The size 
of the product [ C 1 is determined from both [ A 1 and [ B 1 ; viz, [ C 1 will have the same 
number of rows as [ A 1 ,  and [ C 1 will have the same number of columns as [ B I .  



Then the product cjf [ A 1 premuitiplying [ B I is [ C 1 : 

w,?ere 

[ A I  [ B I =  I C 1  
m x p p x n  m x n  (B.2-2) 

and the elements of [ C ] are given by 

a& bkj , i = 1,2,. . ., m (B.2-3) 
k= 1 j = 1,2, ..., n 

The rufes of conformability for the circlecross product matrix operator are developed 
in section d.3. 

The definitions of the following matrix operatiors are used subsequently in the develop 
menr of the operator @ . 

Premultiplication of a general matrix by a row vector: 

L A A [ B J  = L C A  
l x p p x n  l x n  

where 

D 

cj =c akbkj , j  = 1,2 ,..., n 
k= I 

Postmultiplication of a general matrix by a column vector: 

[ A I  (B) = {C} 
m x n n x l  m x l  

(B.2-4) 

(B.2-5) 

(B.2-6) 

where 

Matrix addition (two matrices are conformable for ?Ahtion if and only if they haw 
identical row and column sizes): 

[ A I  + [ D l  = ! C l  
m x n  m x n  m x n  (8.2-8) 
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where 

c.. = a- + b - - ,  i = 1,2 , .  . ., rn 
j = 1,2, ..., n 

U V U (B.2-9) 

B.3 CONFORM ABILITY AND OPERATOR DEFINITIONS 

The circle-cross product matrix operator, (XJ , is defined below in terms of its use as a 
row. column or element operator; the necessary condition of conformability for each oper- 
ation is established. The commutative, associative, and distributive properties of the circle- 
cross product operator are developed in sections B.4. R .5 ,  and B.6, respectively. The use of 
mixed operations, Le., the combined use of the circle-cross product operator with standard 
matrix operators, is discussed in section B.7. 

B.3.1 A Row Operator 

The circle-cross product as a row operator is defined for that operation between a column 
vector and a general matrix as shown in equations (B.3-1) through (8.34). 

{A} @ - [ B I =  [ C l  
m s l  m s n  m x n  

with 

- cij - a- b - ,  i = 1, 2:  - - ., m 
j = 1,2, ..., n 

1 U 

and 

[ B I  @ { A )  = [ C l  
n i s n  m x l  m x n  

(B.3-1) 

(B.3-2) 

(B.3-3) 

with 

ci, = b- a- , i = 1, 2,. . ., m 
j = 1, 2,. . ., n 

( B . 3 4 )  U 1 

The column vector { A }  and the matrix [ B 1 are conformable for the circle-cross 
product row operation if and only if tlie row cize of the column vector, {A}  . is equal to the 
row size of the general matrix, [ B 1.  The foregoingresults arc also valid if the general matrix 
[ B ] is a column vector { B} ; Le., n=l .  

This operation is equivalent to premultiplying [ B 1 by a diagonal matrix ['A'J as shown 
below, where the diagonal matrix is formed from tlie elcmcnts of { A }  as, 



or 

a'- = a i ,  i = 1,2,. . -, m ll 

Thus, using equation (B.2-3), the operation 

rA'J  [ B I  = [ C l  
m x m m x n  m x n  

where 

a bkjf  i = 1 , 2 ,  -. ., m F j = 1,2, . . - ,n  k=I 
c.. = u 

(B.3-5) 

(B.3-6) 

(B.3-7) 

(B.3-8) 

and realizing that the orrly nonzero terms in the summation over k result for k=i, and 
substituting from equation (B.3-6) yields, 

(B.3-9) 

is clearly equivalent to the circle-cross product operations shown in equations (B.3-1) 
through (B.3-4). 

B.3.2 A Column Operator 

The circle-cross-product as a column operator is defined for tliai operation betwen a 
row vector and a qeneral matrix as shown in equations (B.3-10) through (B.3-I 3 j. 

I - A J  @ [ b !  = [ C l  
I x n  mxn m x n  

with 

cij = a. b-. , i = 1 ,  2 , .  . ., m 
j = 1,2, ..., n 

J U 

and 

[ B I  @ L A J =  [ C l  
m x n  I x n  n i x n  

(B.3-IO) 

(B.3-1 1) 

(B.3-17) 



with 

b-- a- , i = 1.2. .  . .. in (B.3-13) c.. = 
D U J 

j = 1.2,. . -~ ti 

The row vector L A J and tlie mLtrix [ B 1 are conformable for tlie circL-cross product 
column operation if and only if tlie column size of the row vector, L A  J, is equal t o  tlie 
column size of the general matrix. [ B 1 .  The foregoing results are also valid if the general 
matrix [ B 1 is a row vector L R -I: Le.. m=1. 

This operation is equivdent t o  postmultiplying [ B ] by a diagonal matrix r A’J as 
shown below, where tlie diagonal matrix is fornied from the elemelits of L A J as, 

a l a ,  0 
r A l d  = [ -.. ] 
n s I1 3 1  

I1 s I1 

c r  

Thus, using equation (B.2-3). the operation 

[ B I  r A ’ J  = [ C I  
111 x 11 n x n ni s n 

where 

‘J 
j = I , ? ,  ..., n k= 1 

(B.3-I 4) 

(B.3-I 5 )  

(B.3-16) 

(B.3-17) 

ind recognizing that the only nonzero terms in tlie sumination over k result for k=j, and 
substituting from equation (B.3-I 5 )  yields, 

c- = b- ;I. . i = I ,  2, . . ., JII 

j = 1,2,  ..., ti U 1J J (B.3-18) 

is clearly equivalent to tlie circlc-cross product opcrations shown in equations (R.3-IO) 
through (B.3-13). 

8.3.3 A n  Elcnicnt Operator 

The circle-cross prodtrct i1S mi cleniwt o p m t o r  is tlc.fincc1 for that operation hetween 
[wo general niatrices :IS showti i n  c(ltlittio!1s (B.3-19) :ind (13 ?-Xi .  



[ A J @ [ B l  = : C l  
m x n  m x n  m x n  

with 

cij = a- b-. , i = 1, 2 , .  - ., m 
j = 1,2,  ..., n 

U U 

(B.3-19) 

(B.3-20) 

Two matrices are conformable for the circle-cross product element operation if and 
only if they are the same size; Le., both iiiatrices are of order m x n. The above results are 
also valid when both [ A 1 and [ B ] are considered to be either row vectors (L A A, L B J) 
or column vectors ( {A}  , { B} ): the resultant matrix [ C ] would be a row vector L C J or 
column vector {c), respectively. 

Therefore, 

L A - ! @ L B J  = L C J  
l x r :  l x n  l x n  

where 

cj = a j b j , j  = 1 , 2  ,.-., n 

and 

$1 0 { B }  = {cl 
m x l  m x l  m x l  

(B.3-2 1) 

(B.3-22) 

(B .3 -23 ) 

where 

ci = a i b i , i  = 1 , 2  ,..., m (B.3-24) 

The expression given by equations (8.3-23) and (B.3-”4) is used irequently within the 
FLEXST.4B theoretical development. This operation gave rise to the misnomer “element 
operator,” which was used to describe the symbol @ . 

B.4 COMMUTATIVE PROPERTY OF THE OPERATOR @ 

The circle-cross produci iCt.ll opelator is commutative; Le., 

{ A }  @ ( R ]  3 [ B 1  @ { A )  - I C ]  
m x  1 m x n  n i x n  m x l  m x n  

’rliis fact is verified when equation (B.3-2) is compared with equation (B.3-4), viz 

(B.4-1) 

(13.4-2) 
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Likewise, the circle-cross product column. operator is commutative, i.e., 

L A J @  [ B ]  [ B ]  @LA;= [ C l  
l x n  m x n  x r x n  l x n  r n x n  (B.4-3) 

'This fact is verified when equation (B.3-11 j is compared with equation (B.3-13), viz 

c-- = a- b- E b.. a. , i = 1 ,2 ,  . . ., m 
J = 1 ,2 , .  . . , n  

U J U  U J .  

The circle-crcx product element orerator is also commutative; using equations (B.3-19) 
and (B.3-20) and intercharlging notation for [ A I and [ B 1 since they are arbitrary yields, 

[ A I  @ [ B I  I B I  @ [ A I  = I C 1  
n i x n  m x n  m x n  m x n  m x n  (3.4-5) 

or 

c.. = a--b.. b . . a - - , i  = 1,2 , . . . ,  m (B.4-6) U U IJ U ? i  
j = 1 ,2 ,  . . . ,  n 

B.5 ASSOCIATIVE PROPERTY OF THE OPERATOR @ 

The circle-cross product operator is associative; i.e., 

({A} @ [ B l )  (A) @ ( [ B l  @ L C J )  = [ D !  
m x l  m x n  l x n  m x l  m :: n l x n  m x n  

'-C-.l  f 
(B.5-1? 

J3quations (B.3-1) and (i3.3-19) are used to dcmonstrate the identity of equation (B.5-1). 
The left-hand side (LHS) of the identity is evaluated as 

( (A)  @ [ B l )  @ L C J  = [ D l  
m x l  m x n  n x l  m x n  

let 

using equation (B.3-1) 

then substituting equation (B.5-3) i.to equation (8.5-2) yields 

[ R l  @ L C J =  I D 1  
m x 2  n x l  m x n  

(B.5-2) 

(L' .5-3) 

(B.5-4) 

(B.5-5)  

B-7 ( 5 j  I /-I5 J 



Now using equation (B.3-12) and substituting from equation ( B . 5 3 ) ,  the result for the LHS 
exyicsion is 

dij 2 a- b- c- , i = 1.2,. . ., m 
j = 1,2, .... n 

1 l f J  

The right-hand side (RHS) of the identity of equatioii (B.5-;) is evaluated as, 

{A}  @ ( [ B ]  @ L C - l ) =  [ D l  
m x  1 m x n  n x  I m x n  

let 

( [ B l  @ L C J ) =  [ R I  
m x n  n x l  m x n  

expand equation (B.5-8) using equation (B.3-12), thus 

qj = b - c - , i  = 1,2 ,..., m 
j = 1 , 2 , .  . . , n  

U J  

substituting equation (B.5-8) into equatim (B.5-7) yields 

{ A )  0 I R I  = [ D l  
m x l  m x n  m x n  

(B.5-6) 

i B .5 -7) 

(6.5-8) 

(B -5-9) 

(B.5- i 0) 

Now using equatlm (B.3-1) and substituting from equation (B.5-9), the result for the RHS 
expansion is 

d-  = a- b.. c. , i = I , ? , .  . .. m 
j = 1,2,. . . , n  

U 1 l J J  
(B.5-1 1) 

Equations (B.5-6) and (B.5-1 1 j are identical, demonstratin: the associative propcrty of 
the circle-cross product operator. 

8.6 DISTRIBUTIVE PROPERTY OF THE OPERATOR @ O V E R  MATRIX ADDITION 

T h e  circle-cross product matrix operator is distributive over matrix addition (or 
sub traction); ix., 

To evaluate the LI-IS of equation (B.6-I ), let 



using equations (B.2-8) and (B.2-9), 

(B.6-3) 

substitute equation (B.6-2) into the LHS of equatio:; (--6-1) and introauce an auxiliary 
matrix [ l3 I ,  

[ A I  @ [ R l  = [ D l  
m x n  r n x n  n i x n  (B.6-4) 

using equations (B.3-19) and (E.3-201 and substituting from equation (B.6-3) yields +he 
result for the LHS of the identitv in equation (B.6-I) 

dij = aij (bij + cij) ~ i = 1, 2,. . ., m 
j = 1,2, ..., n 

To evaluate the RHS of equaiion (Bh-l) ,  let 

[ A I @  [ B l  = [ R l  
m x n  m x n  m x n  

and let 

[ A I  @ [ C l  = [ S I  
m ? t n  m x n  m x n  

(B.6-5) 

(B.6-6j 

(B. 6-7) 

by using equations (E.3-19) and (B.3-20) ;u evaluate equations (B.6-6) and (P:--7) yield, 

r- = a- b.. , i = 1 ,  2 , .  . ., ni 
j = 1 , 2 , .  . . , n  

U 1J U 

and 

s.. ,, = a.. lJ c.. l J , i  = 1 , 2 . .  . , H I  

j = 1 ,  2 , .  . ,, n 

(B.4-8) 

(B.6-9) 

Now, foiming an auxiiiary matrix [ D ! by adcling equations (B.6-6) and (B.6-7) and 
iisiiig equations (B.6-8) and (B.6-9j yields the result for :he RHS of the identity of equation 
(B.6-1) as 

(B.6-I 0) 

Equdions (B.6-5) and (B.6-IO) are identical; thus. thc distributive property of t1.e circle- 
cross product matrix operator over matrix addition ( 0 1  subtraction) is demonstratxi. 



R.7 THEOPERATOR 0 COIIBLXED WITH STANDARD MATRIX OPERATIOKS 

I.::. yurpcrse of this cx t ion  is to  develop the meanins of tlie circle-cross product matEis 
operator when it i s  used :n e s p s s i o n s  which also contain standmi nratris oper.:icns. 
Particular enipha-:s Is placed upon thc order of the niatris opentions mntained in the 
following expressions. The size of eacIi matris has been intentioridly oxi t ted  below: 
however. each of tlie espressions shown is subscquwtly examined with specific regard to 
yxticular matrix sizes. and those orders of opr.ations that result in nonconformahle 
ekpmssions expressions which mnnot be evaluated) are identified The expressions ;ire: 

(B.7-1) 

(B-7-2) 

iB.7-3) 

(B.74) 

Case 1 

The expression diown in equation (B.7-1) is now cterzloped for tilret: sets of matris s i z a  

Let 

Clearly, the ordzr of operations to e-.dul;:t: equation (€3.74) must be 

( I A l  ( B } )  Q {C} = {d 
n i s n  nsI 111 x 1 ni s I 

resulting in 

Recall that thi; zxptession 

(B.7-7) 

(U.7-S) 

( B.7-9) 

catinot b -  evaluated since { B)  and { C )  arc not confot-mablc for tlic circlecros.: ;r>duct 
row o+iX!on !sce XC. E.3 I .) 



Therefore. using equations (B.2-7) and (B.3-23), the expression given in equation (B.7-7) 
mults  in, 

n 

Next, consider the expression of equation (B.7-I) with the following matrix sizes: 

[ A I  { B }  0 { c }  = -{D) ,m+n 
m x n n s l  11x1 m s l  

This expression can only be evaluated as 

[ i l l  ((B} 0 {C)) = {D} 
msn n s l  n s l  m s l  

resulting in 

The espression 

( [ A I  0) @ IC1 
m s n n s  1 n s  1 

(B.7-IO) 

(B.7-11) 

(B.7-12) 

(B.7-13) 

cannot be evaluated because :he matrix product [ A ] { B} and the column vector (C} are 
net conformable for the cicclecros.. product mrltris opektion. 

Using equations (B.2-7) and (B.3-23). tile espresion given in equaticn (B.7-I 1) results in 

Next, consider the expression of equation (-8.7-1) with thc following m;trix sizes. 

[ A ]  ( B )  @ ( C I  = (D) 
n s n n s l  n s l  n x l  

(B.7-14) 

(B.7-!5) 

The order in which the cperiItion5 3re performed to evaluate this expression must be 
carefully specified, The result of tile operation 

( [ A I  ( B } )  0 ( C !  = { D }  
n s n n s  1 n s l  1 1 x 1  

(B.7-16) 



is given by equation (B.7-10) as, 

The result of tile operation 

[ A I  ((B) 0 {C]) = {D) 

is given by equation (B.7-14) asLs, 

d- 1 ;= 2 -  *;k bk ck i = 1.2, n 
k=: 

Case 2 

(B.7-17) 

(B.7-18) 

The expression given by equation (B.7-2) is no- dependat  upon the order in which it is 
evaluated. To evaluate equation (B-7-2). let 

Further, let 

{ A )  0 [ B I  = I R 1  
n i s l  m s n  n i x n  

then 

r-- 11 = a; . bij $ i ;. 2. . -, 111 
j = I , ? . .  . _. n 

(8.7-1 0 )  

(B.7-20 j 

Subctituting equation (3.7-30) into qualion iB.7-IS)) and then substituting c'quation (B.7-11) 
inw che result yields 

n 

k= 1 
di = 

ai bik L'k, i = I ,  2 , .  . .. ni 

The same result is obtained by cvaluating the rsprcssioii 

( A )  @ ( I B  1 ( c ) )  = ( 4  
ni s I 111 x 11 n s I tti  s I 

(B.7-22) 

! B.7-33) 



case 3 

The expression shown in equation (b.7-3) must be evaluated as 

(B.7-24) 
( A 1  ( (B}  @ I C l )  = I D 1  ,pfm 

m x p  p x l  p x n  m x n  I+! 

Otherwise, the matrix product [ A 1 { B) would nut be conformable with [ C 1 for the 
circle-cross product operation. Equation (B.7-24) is evaluated for [ D J using equations 
(B.3-1) and (B.2-2) to yield, 

P 
dij =E a & b k c k j , i  = 1 , 2 > . - . , m  (B.7-25) 

j = 1 ,2 , - . . ,n  k=l 

It is possible that the expression given by ~ L I .  ion (B.7-3) can be evaluated to produce 
different results whzii the matrix sizes are as shown in equation (B.7-26). 

[ A l { B )  @ I C ] =  I D 1  
n x n n x l  n x n  n x n  

Evaluzting 

( [ A I  ( B ) ) @  [ C l  = [ D l  
n x n n s l  n s n  n s n  

yields 

dij = c i j A  a& b k ,  i = I , ? , .  . .,n 
j = 1,2,.. , n  k= 1 

Whereas, 

(B.7-26) 

(B.7-27) 

(B.7-28) 

(B.7-29) 

may be evaluated as 

n 
(R.?-30) .. do =E a k b k C k , i  = 1 , ~  ,..., n 

j = 1,2, ..., n k= I 

The correct order to evaluate this e x p s i o n  Jepends upon the desired results ds given 
by equation (B.7-28) or (B.7-30). 



The expression given by equation (B.74) may be evaluated utilizillg any of the folIowin_e 
five form (where all matrices are either n-square or n-vector as shown): 

(B.7-3 1 ) 

3) [ A  1 ((B) 0 ( IC  1 (D])) = (F.1 (B.7-32) 

3) ((1-41 (B) )  3 K l )  {D) = {E}  (B.7-33) 

1) ( [ A I  (BI)  0 ([a {DI) = {E} 
n x n n x l  n x n n n l  n x l  

4) [ A I  ((M 0 I C ] )  w) = {E1 (B.7-34 j 

5 )  ( [ A I  (id 0 Kl)) b) = (€1 (B.7-35) 

These forms all have meaning; therefore, tiie important Lwrtsideration is to establish a 
c!car uqderstanding of exactly which matrices are the object matrices (Le., the pxn~at r i s  and 
postmatrix) in the circle-cross product opention. Table B.7-1 shows the object matrices for 
equations (B.’7-3 1)  through (B.7-35). 

The expressions given by equations (B.7-34) and (B.7-35) must yield identiwl xsults 
since they utilize the same circlecross product matris operation. 

Equat’ans (B.7-3 I )  through (B.7-35) may be evaluaitd using the techniques developed 
earlier. I h s e  results are shown in table B.7-2 where the elen‘ents ei define the column 
vector {E} above. 

Table B.7-2 also shows that forms “1” and “3” are equivalent. Forms “2”. “4”, arid 
“5” are also equivalent; however, they are not equivalent to “1 ” or “3”. One could,of 
course select matris sizes that would result in nonconformable matrix operations. 

Case 5 

The expressi-on of equation (B.7-5) must be evaluated in one spscitic urder for the rwtriu 
sites shown in equation (B.7-36), due to  the conformability requirctncnt of thc circlecross 
product operations. 

and 
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TABLE B.7-1 -- CASF4: PREMATRICES ANC POSTMATRICES 
OF THE CiFCLE-CROSS PRODUCT OPERATOR 

Form 

! 

2 

3 

4 

5 

Prematrix Postmatrix Equation nlimber 

[ A I  (8) [ C l  {D} B.7-31 
n x n  n x l  n x n  n x l  

(8) [CI (0) 8.7-32 

[ A  1 (8) [ C l  8.7-33 

[ C l  8.7-34 

t C 1  8-7-35 

PI 
tB} 

TABLE B.7-2- EVALUATIONS OF AN EXPRESSION WITH THE 
CIRCLE-CROSS PRODUCT AND STANDARD MATRIX OPERATIONS 

Evaluationsof: [AI {B) @ [C] {D} = {E} 
n x n n x l  n x l  n x n  n x l  

I Form 

1) ([AI {B}) @([Cl (0)) = {E) I 

4) [ A I  (({E) @ [Cl )  {D}) = (E} 

Result 

n n  

ei = C aik bk Cigdp, i = I, 2,. . - ,  n 

k-1 Q=l 

n n  

k=l  Q=l 

n n  

ei =E z a i 8 b p c i k d k , i = l . 2  ,..., n 

k= l  p=1 

n n  

e- 1 = ~ ~ a i k b k ~ ~ d g , i = 1 , 2  ,..., n 

II n 



The order of operations must be carefully specified when all matrix sizes are n x n, 
since the results produced for different orders of evaluation may be quite different. ‘l’hese 
differences are subsequently identified. 

Consider equation (B.7-38) where all matrices are n x n. Equation (8.7-38) nay  be 

( [ A I I B I )  @ ([Cl[Dl) = [ E l  

evalu;ir4 iising equations (B.2-2) and (B.3-19) as follows. 

(R.7-3b) n x n n x n  n x n n x n  n x n  

Let 

where 

and let 

where 

[ R l =  [ A I I B I  
n x n  n x n n x n  

n 

I S 1  = iCI[Dj 
n x n  n x n n x n  

n 

~ i j  = C 
P= 1 

d q  , I  =- 1,2,. . ., R 
j = l ,Z , - - .yn  

Then, substituting equations (B.7-39) and (B.7-41) into equation (B.7-38) yields 

[RIB [SI = [ E l  
n x n  n x n  n x n  

where 

eij - - rij sij i = 1 ,  2, . . ., n 
j = 1 , 2  ,..., n 

(B.7-39) 

(B.7-40) 

(B.7-41) 

(B.7-42) 

(B.743) 

(B.7-44) 

and substituting equations (B.7-40) and (B.7-42) into equation (B.7-44) provides thc final 
result 

n n 



or 

n n  

(B.746) 

Next evaluate equaticn (B.7-5) as 

[ A I ( I B l  @ [ C l )  [ D l  = [ E l  
n s n  n x n  n s n  n r n  n x n  (B.7-47) 

4ai11, using equation (B.2-2) and (B3-19), let 

where 

(B.743) 

(B.749 j 

Substituting equation (B.748) into equation (B.747) and evaluating left to right yields, 

[ A l I R I  [ D I =  [ E l  
n x n n x n n r n  n s n  

with 

[ S I  = [ A I l R J  
n s n  n x n n x n  

where 

sjj - aik rkj , i = 1 ~ 2, . . .) n 
j =  I ,  2 , .  . -, n -e k= I 

further 

eij -i - 
P= I 

s i ~ d p j  . i  = 1.3 ...., n 
j = l,:, ..., n 

(B. 7-50) 

(B.7-5 1 ) 

(R.7-52) 

and t i le  tinal result is obtained, sfter substituting equations (B.7-49) and (B.7-51) into 
equation (B.7-52), as 



n n  

Next evaluate equation (B.7-5) as, 

( ( [ A l [ B l )  @ [ C l ) t D l =  [ E l  
n x n n x n  n x n  n x n  n x n  

Let 

[ R l  = [ A I [ B l  
n x n  n x n n x n  

and 

[SI = IRIO [ C l  
n x n  n x n  n x n  

Using equations (B.2-2) and (B.3-19) yields, 

r3 - a*bkjyi = 1 , 2  ?..., n 
j = 1,2, ..., n 

-E 
k= I 

n 

-- sij = aik bkj c i  , f = 1,2, .  . ., n 
J = 1, 1:. . ., 11 k= I 

Substituting equation (B.7-56) into equation (B.7-54) yields, 

[SI [ D l  = [ E l  
n x n n x n  n x n  

where 

n 
s i tdgj ,  i - - !, 2 , .  . ., n Gij - -x e= I j = 1 , 2  ,...: n 

(B.7-53) 

(B.7-54) 

(B.7-55) 

(B.7-56) 

CB.7-57) 

(R.7-58) 

(B.7-59) 

(B.7-60) 

(L3.7-6 I ) 
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thus, the final result is 

Finally, evaluate equation (B.7-5) as, 

Let 

and 

Then, 

[ A I ( ! B ]  6) ( [ C l [ D l ) )  = [ E ]  
I1Xn n x n  n x n n s n  

[ S I  = [ € I 1  0 [ R l  
n x n  n s n  n s n  

n 
t7 

'ij = c ik d kj - , i  = 1 .2 ,  ..., n 
k= 1 j = l Z 2 , . . . , n  

and 

1,2 , .  . ., n 
j = 1 , 2 , . - . , n  

sij = b.. r.. , i = 
U JJ 

or 

11 

s.. = bij c ik d kJ - , i =  1 , 2  ,..., n U 
k= 1 j = 1,2, .  . ., n 

Substituting equation (B .7-65 ) i n  to eq ua t ion ( B. 7-63 yields 

[ A l [ S l  = [ E l  
r i x n n x n  n x n  

(B.7-63) 

(B.7-64) 

(B.7-65) 

(B.7-66) 

cB.7-67) 

(B.7-68) 

(B.7-69) 



where 

- 
Form 

([AI [El )  ( 3 ( I G l  ID])= !El 

or 

Result 

n n  

e-. = P aik bk, cigdi9.i = I, 2 ,..., n ‘I 
k-1 f=l J = 1, 2,. . . , n 

eij =), a s  bQ;. A c& dkj , i = I ,  2 , .  . ., n 
j = 1,2 ,  ..., n Q=l k= 1 

(E.7-70) 

(B.7-7 1) 

The final results are obtained by rewriting equation (B.7-71) ap 

n n  
eij =cc a g  bfj cfi dkj , i = 1 , 2 , .  - ., n (B.7-72) 

j = 1,2, ..., n Q=l k=l 

n e  results of evaluating the expression of equation (B.7-5) as developed in equations 
(B.7-38) through (B.7-?2) are summarized in table B.7-3. 

TABLE B.7-3- ADDITIONAL EVALUATIONS OF AN EXPRESSION WITH THE 
CIRCLE-CROSS PRODUCTAND STANDARD MATRIX GPERATIONS 

Evaluations of: [ A I [ B I @ [ C I [ D 1 = [ E 1 
n x n n x n  n x n n x n  n x n  

j = 1 ,  2, ..., I1 
.I-.- 
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B.8 SPECIAL CONSIDERATIONS OF 3 AS IT IS 
USED 1N THE FLEXSTAB PROGRAM 

Throughout the preceding de\.-'opment, three matrix types were treated: _- 
I )  Row vectors, L _I 

2) Colr:mn vectors, {a) 

3) General m x n matrices where m, + I ,  [ 1 

Circie-cros; product opentiorrs for each of the t h e e  matrix types were develr ed to 
demonstrate several potential uses. However, the FLEXSTAB computer program does not 
require all of the circle-cross product cperations that where defined. 

The FLEXSTAB circle-cross product matrix operations, performed by subroutine 
TEMAB, are coded for the row operator (sec. B.3.1) 

or 

and the element operator (sec. B.3.3) 

or 

[ A ]  @ (B?  
m x n  1 3 x 1  

The circle-cross product column operator (sec. B.3.2) 

LAJ 0 I B 1 
1 x 1 1  i i i x n  

or 

(B.8-1) 

(R.8-2) 

(B.8-3 j 

(B.8-4) 

(B.8-5) 

(B.8-6) 

is not uscd in the theoretical clcvelopmcnt !Vol. I )  zf tlic FLEXSTAD program. Tlicrc,bre, 
th is  opcmtion is not pcrforiiicd b y  subrouti;.c TEhlA13. 



Some of the circle-cros product matrix Operations shown in Volume 1 were coded in-line 
in subroutine LEC of the SD&SS program rather than calling TEMk-?S. This was dcme 
because partitions of matrices rather than full matrices were used. 

Vol. I 
page no. 

B.9 INDEX TO THE USES OF TKE CIRCLECROSS PRODUCT MATRlX 
OPERATOR WITHIN THE FLEXSTAB THEORETICAL DEVELOPMENT 

voi. I 
equation no. 

Type of operation 

The occurrence of the circle-cross p rodx t  matrix operator, @ , in the text of 
Volume I is indicated in table B.9-1. 

3- 159 
3- 162 
3- 197 

’ 3-198 
’ 3-199 ‘ 3199 

5-83 
5-83 
5-83 
5-83 
5-84 
5-84 
6-77 
6-77 
6-84 
6-84 
6-84 
6-85 

TABLE B.9-I. - USESOF CIRCLE-CROSSPRODL’CT IN THE 
FL EXSTAB THE@ RETICAL. DE VELOPMEIU T 

I I I 

3.4-224 
3.4-235 
3.5-67 
3.5-70 
3.5-7 1 
3.5-72 
5.8-26 
5.8-27 
5.8-29 
5.8-30 
5.8-32 
5.8-33 
6.5-30 
6.5-31 
6.5-43 
6.5-44 
6.5-45 
6.5-46 

and row [ A I @ { 6) 

row, { A }  @ [ B 1 
eleinent.1 A }  @ ’, B )  
element,, A )  @ { B >  
clement,{ A }  @ { B} 

row, [ A 

r o w , [ ~ I  @(B 
1 r o w , [ A ]  @ ( B  

B.10 INDEX TO THE EXPLICIT USES OF TME CIRCLE-C‘ROSS PROWCT 
MATRiX OPERATOR WITPIN T’-E FLEXSTAB CODE 

Explicit uses of the circle-cross product matrix operator are defined as tliosc nintrix 
operations performed by subroutine TCkAB. The subroutine TEhl AB is contained i n  tlic 
Matrix Operation Package (MOP). In FLEXSTAR, it is always acccssetl tlirougli the A..to- 
matic hfatrix Management Package (AMMP) by  a “CALL MOP (6HEMA13, . . .)” stateincnt. 

The circle-cross product matrix operator, @ , is usccl explicitly within tlic FLEXSTAB 
program SDaSS, subroutinc DMAT 0 . 1 1 ~ .  Tavlc. B.10-1 indicates where thc circlc-cross 
product operator is used within subrouti1,c‘ DMAT, and i t  identifies the Volunic I equation 
that is related to that operation. 



TABLE B.10-I. -USES OF CIRCLE-CROSS PRODUCT 
IN Th’E FLEXSTAB CODE 

~~ 

Volume I 
ref. 

DMAT 0365 
DMAT 0373 
DMAT 0492 
DMAT 05 I 4  
DMAT 0536 
DMAT 0544 
DMAT 9579 
DMAT 0587 
DMAT 0766 
GMAT 0774 
DMAT 0809 
DMAT 08 17 

3.5-7 1 
3 5-71 
3.5-70 
3.5-70 
3.5-7 1 
3.5-7 1 
5.8-26 
5.8-26 
3.5-71 a 
3.5-71 a 
5.8-26 a 
5.8-26 a 

3.1 S9 
3-199 
3- 198 
3- 198 
3-199 
3- 19t 
5-83 
5-83 
3- 199 
3- 199 
5-5, 
“F3 

a Xntisymmetric f o r m  are pot explicitly s h o m  in Volumn I 

i Volume I l l  
ref. 

IlO. 

9.3-46 
Y.3-46 
9.3-46 I 9.3-46 
9.3-46 
9.3-46 
9.3-46 
9 :  6 

9.3-46 
9.3-’.6 

9.3-46 I 
9.3.46 I 

9- 130 
9- 130 
P 131 
9-13. 
9- 132 
9-132 
9- 132 
9- 132 

9-? 33 
9-133 
0-133 I 

13-93 ( 5 /  I / 7 5 )  



REFERENCES 

1-1 Wodwucl- F.; I;rRowe. E.; and Love. J. E.: Analysis and Design cf Supersonic Wing- 
Body Combinations, Including Flow Properties in Near Field. Part I and iIt NASA 
CR-73107,1967. 

1-2 MacNraI, R. H.: The Nasmn Theoretical Manual. NAiX SP-221. Sept. 1970. 

1-3 Anon: SAMECS-Stm tural Analysis System-Theory Document. Bocing document 
D6-23757-2TN, June 6,1969. 

2-1 Sololnikoff, I. S.: Mathefiiatical Theory of Elasticity. McGraw-Hi9 Book Company, 
- Inc., 1956. 

2-2 Etkin, B.: Dynamics of Flight. John \\“ley and Sons, lnc., 1962. - 

2-3 Ashley, H.; and Landahr, hi.: Aerodynamics of Wings and Bodies. Addison-Wesley Pub- 
bhing Company, Inc- 1965. 

2 4  Milne. R. D.: Dynamics of the Deformable Airplane, Parts 1 aild 11. Her Majesty’s Cta- 
tionery Office, Lor qon, 1962. . 

2-5 Lamb: Higher Mechanics. Cambridge University Press, 1939, pp. 175-177. 

2-6 . Hurty. W. C.; and Rubinstein. M-F-: Dynamic< of Structures. Prentice-Hall, 
Inc., 1964. 

3-1 hliks, J. W.: Potential Theory of Unsteady Supersonic Flow. Cambridge Univesity 
’ Press, 1959. 

3-2 Ganick. I. E.: High Speed Aerodynamics and Jet Propulsion, Volume 7. Princeton 
University Press, 1960. 

3-3 kitkins: C. E.; Runyan. H. L.; and Woalston, D. S.: On the Kemal Function of the 
Integral Equation kelating the Lift and Downwash Distributions of Oscillatin; Finitc 
Wings in Subsonic Flow. NACA Report 1234, 1955. 

3-4 Watkins, C. E.; arid Berman, J. I-1.: On +he -rial Function of the Integral Equation 
Relating Lift and Downwash Distribuv-..:, 3- Oscillating Wings in Supersonic Flow. 
NACA Report 1257, 1956. 

. .  - 

3-5 Garner, H. C.: Mdthopp’s Subsonic LiftingSurface Theory of Wings in Slow Pitching 
Oscillations. ARC TR R&M 2885, 1956. 

K- I 



3-6 Row. W. S.: Collocation Method for Calculating the Aerodynamic Prttssurc Distribution 
on a Lifting Surface Osc$llating in Subsonic Compressible Flow. A I M  Syripos: 'Ut11 on 
Structural Dynimics and Aercelasticity. Beston. Mass., August 1965. 

3-7 Liepmann and Roshko: Elemcnts of Gas Dymmia. GALCIT Aeronautical Series. John 
W e y  and Sons, Inc. 1958. 

3-9 Woodward. F. A.: A U d i &  Approach to the Analysis a i d  Design of B ing--Body Com- 
binations at  Subsonic and Supersonic Speeds. A1.M Paper No. 68-55. January 1968- 

3-9 Sears, \V. R.: General Theory of High Speed Aerodynamics. Volume VI. Princeton 
University Press, 1954. 

3-10 Mercer, J. L.: Weber, J. X.: and Lcsferd. t. P.: Xeredynamic lnllrience 
Coefficient Method Using Singularity Splines. XASA f R-242.3. Dxembrtr 1973. 

4-1 Coldstein: Classid Mech;lnics. ,4ddison-\\iesley Publishing Company. Inc., 1059. 

4-2 Novozhilov. V. V-: Foundations of the Nodhitzar Theory of Eladcity. Gnylock 
Press, 1953. 

4-3 Zienkiewin, 0. C.: Finite Element Methods in Structural and Continuous Mechanics. 
McGraw-HiU Book Company, Inc., 1967. 

5-1 Hildcbrand: Ad-;anmd C;llculus for Enginwrs. Prentice-Hall, lnc. 1957. 


